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1 Introduction

During the first year of the project, the members of the consortium have developped
two methods for the analysis of sequential programs with infinite data domains of the
following types:

1. lists containing numeric values (integers, reals). The model used for analysis
follows the standard imperative programming paradigm, in which lists can share
a common tail, or present circularities. One may consider pointer operations such
as dynamic cell creation and delete, destructive updates of selector fields, as well
as arithmetic operations on the data contained within the lists. This first method,
based on abstract interpretation, synthesizes invariants true at each control point of
the program.

2. integers (scalars) and pointers (arrays). A precise analysis for sequential programs
with integer and pointer variables has been developped. The method deals equally
with programs with arrays and pointer variables, being able to detect array-out-of-
bounds and low-level pointer manipulation errors, such as freeing a non-allocated
pointer, or reading from a non-aligned memory location.

A common point of the two techniques above is that they can handle programs with
function calls in a compositional way: we compute function summaries and use this
information at the calling sites. This method avoids function inlining, which would blow
up the size of the models, making the analysis unrealistic. Exploiting the procedural
structure of the program is thus of the keys to scalable program verification.

Currently both analyses are implemented in two prototype tools, CINV and FLATA.
We have used the FRAMA-C platform for integration, as both tools take as input C code,
via two different plugins, CELIA and FLATA-C, respectively. In both cases, the input C
program is sliced, using the FRAMA-C slicing plugin, in order to preserve the variables of
the data types handled by our analyses. In some cases, using only slicing may not suffice
to generate models of manageable size, hence we also use abstraction.

2 Model Extraction: Slicing for sequential C programs

Slicing for sequential C programs is achieved through the use of a Frama-C plug-in. The
slicing plug-in relies on the results obtained by two other plug-ins of the platform:

• the value analysis plug-in, that offers (in particular) aliases resolution of the under-
lying program ;

• the program dependence graph (PDG for short) plug-in.

A slice of program at a given point p and a given variable x corresponds to the set of
statements that might affect the value of said variable x at point p. This set of statements
should still be a compilable and executable program on its own.

2/15



Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 1

The essential part of the slicing plug-in is the ability to construct a sound program
dependency graph of the input code. For this reason, let us give here a brief summary of
the PDG plug-in.

Program dependence graph computation The PDG plug-in computes different kinds of
dependencies related to the analyzed program.

• value dependency: in an assignment x=a+b, the variable x depends on both the values
of a and b before the assignment;

• address dependency: in an assignment *p=x, there is a dependency between the
locations pointed to by p and x;

• control dependency: when a datum can be modified through various execution paths,
it depends from the conditions determining the path choice;

• data dependency: variables used in an instruction trigger a dependency on their
declarations (they indeed must have been declared to be used).

The PDG plug-in computes these dependencies by a forward dataflow analysis on
the control-flow graph of the program. Once a PDG for the given program has been
computed, the problem of slicing is mostly reduced to the problem of the reachability of
a given node in this graph.

Slicing computation The slicing plug-in finely drives the PDG plug-in in order to exploit
its analyzes locally. Whereas the PDG plug-in does a general computation, the slicer
knows its goals and uses that to adapt the PDG to its needs. Actually, the use of the
PDG computation is modular in the context of the slicer.

Also, an effort has been made to keep the analyzes as precise as possible, for example
in the context of inter-procedural analyzes.

Slicing criteria Various slicing criteria can be given either regarding code observation or
regarding logical properties of the program.

In the case of code observation, several elements can be marked as elements to be
preserved in the resulting slice. Slicing can be made on function calls and returns, read
and write accesses to selected left-values of the code, or left-values at the end of the
entry-point function of the code. Slicing on function returns (e.g., for functions f1, ...fn)
ensures for example that each time these functions do indeed return in the original code,
their sliced counterparts also terminate with the same return value. (Frama-C’s slicing
plug-in is sound in presence of potentially infinite loops, but only with respect to the
semantics above: for functions that never terminate, slicing may require special care by
the user to keep the reason for non-termination.)

Frama-C’s slicing plug-in also has the ability to be used on logical properties specified
in ACSL (ANSI/ISO C Specification Language). In this case, properties verified by the
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/*@ a s s i g n s *p \from \empty;
a s s i g n s \ r e s u l t ; */

i n t scanf ( char const *, i n t * p);
i n t pr int f ( char const *, i n t );

i n t send1 ( i n t x) {
pr int f ("%d\n", x) ;
r e turn x;

}
i n t send2 ( i n t x) {

pr int f ("%d\n", x) ;
r e turn x;

}
i n t send3 ( i n t x) {

pr int f ("%d\n", x) ;

r e turn x;
}

i n t send4 ( i n t x) {
pr int f ("%d\n", x) ;

r e turn x;
}

i n t fetch ( vo id ) {
s t a t i c i n t nb_fetch = 0;

i n t value ;
nb_fetch++;
scanf ("%d",&value );
r e turn value ;

}

i n t main( vo id ) {

i n t red , green , blue , yellow;
i n t sweet, sour , salty , b i t te r ;
i n t i ;

red = fetch ();

blue = fetch ();
green = fetch ();

yellow = fetch ();

red = 2* red;
sweet = red*green;
sour = 0;

f o r ( i = 0; i < red; i ++)
sour += green;

sa l ty = blue + yellow;
green = green + 1;

b i t te r = yellow + green;

send1 ( sweet );
send2 ( sour );
send3 ( sa l ty );

send4 ( b i t te r );
r e turn 1;

}

Figure 1: Source code of the example

sliced code are ensured to be verified by the initial code. This can be used to slice function
assertions, loop variants and invariants or threats emitted by the value analysis plug-in.

The slicing plug-in associates a mark to every instruction of the initial code, which can
be also visualized through Frama-C’s GUI. The value bottom is given to instructions that
need not be kept (according to a given slicing criterion). Other instructions, that have
been kept but are not needed for the given slicing criterion are marked as spare: they are
needed for the program to remain compilable. Finally, semantically relevant instructions
are marked depending on their dependency types (address, control or data).

Use case example A simple example is given in Figure 1. It is used to demonstrate the
slicer’s ability to deal correctly with inter-procedural analysis, as well as ACSL annota-
tions.

Assume we want to slice on the return value of function send1, or on the calls to
function send2. Frama-C’s slicing plug-in will be invoked respectively by:

frama -c foo.c -slice - p r i n t -slice -return send1
frama -c foo.c -slice - p r i n t -slice -calls send2

The result of each invocation is shown in Figure 2. In both cases, the calls to printf

have been deemed irrelevant and removed, as functions without ACSL prototypes are
assumed not to change the memory. On the other hand, the specification of the scanf

function implies that it assigns its second argument, and the relevant calls have been
kept. Notice that in the slicing for send1, the for loop inside the main function is
entirely removed, as it is not used to compute sweet. Moreover, when slicing on the
calls to send2, the slicing plugin detects that the argument of send2 is not useful, and
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ex te rn i n t scanf( char const *, i n t *p ) ;
i n t send1_slice_1 ( i n t x ) {

r e turn (x);
}

i n t fetch_slice_1( vo id ) {
i n t value ;

scanf("%d",& value );
r e turn (value );

}

vo id main( vo id ) {

i n t red ;
i n t green ;
i n t sweet ;

red = fetch_slice_1();
green = fetch_slice_1();
red = 2 * red;
sweet = red * green;
send1_slice_1 (sweet );
r e turn ;

}

ex te rn i n t scanf(char const *, i n t *p ) ;
i n t send2_slice_1 ( vo id ) {

r e turn ;

}

i n t fetch_slice_1( vo id ) ;
i n t fetch_slice_1( vo id ) {

i n t value ;

scanf("%d",& value );
r e turn (value );

}

vo id main( vo id )
{

i n t red ;

i n t green ;
i n t sour ;

i n t i ;
red = fetch_slice_1();
green = fetch_slice_1();
red = 2 * red;
sour = 0;

i = 0;
whi l e ( i < red) { sour += green; i ++; }

send2_slice_1 ( sour );
r e turn ;

}

Figure 2: Source code of the example

simplifies the prototype of the function by removing it.

Slicing techniques, extended to a whole program, allows to produce a model of the
code, where only the interesting functions have been kept. Currently, the slicing plug-in
works only for sequential programs. For concurrent systems programs, we foresee to apply
slicing to obtain a model focusing, for example, on lock takes and releases to compute
a deadlock analysis (i.e., are we able to reach a deadlocked state from the start of this
program ?).

3 Sequential Programs with Lists and Integer Data

Automatic synthesis of valid assertions about programs, such as loop invariants or proce-
dure summaries, is an important and highly challenging problem. The LIAFA team has
addressed this problem for sequential programs manipulating singly-linked lists with un-

bounded data such as integers or reals. These programs may contain procedure calls, and
actually they are in many cases naturally written using recursive procedures. Examples
of such programs are sorting algorithms and programs manipulating sorted lists.

Assertions about these programs typically involve constraints on the shape of the
structures, their sizes, the data values contained in the memory cells, the multisets of
their data, etc. Consider for instance the well known algorithm quicksort that sorts
the list pointed by a given as input. The specification of quicksort includes (1) the
sortedness of the output list pointed to by res, expressed by the formula:

∀y1, y2. 0 ≤ y1 ≤ y2 < len(res) ⇒ data(y1) ≤ data(y2) (1)
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where y1 and y2 are interpreted as integers and used to refer to positions in the list
pointed to by res, len(res) denotes the length of this list, and data(y1) denotes the
integer stored in the element of res at position y1, and (2) the preservation property
saying that the multiset of data of the input list a is equal to the multiset of data of the
output list res. This property is expressed by

ms(a0) = ms(res) (2)

where ms(a0) (resp. ms(res)) denotes the multiset of integers stored in the list pointed
to by a at the beginning of the procedure (resp. res at the end of the procedure).

We have defined and implemented an approach for automatic assertion synthesis of
such constraints based on inter-procedural analysis within the framework of abstract in-
terpretation [12]. More precisely, we consider abstract domains for expressing constraints
on relations between program configurations, and we define compositional techniques for
computing procedure summaries concerning various aspects such as shapes, sizes, and
data.

This work is built on our previous work [3] where we have defined an accurate intra-
procedural abstract analysis for synthesizing invariants of programs with lists without
procedure calls. In this approach, abstract domains are defined where elements are pairs
composed of a heap backbone and an abstract data constraint. While the techniques in [3]
are strong enough to generate complex invariants for iterative programs, they cannot be
applied for compositional computation of procedure summaries.

The extension to the inter-procedural analysis is not trivial due to many delicate
problems that appear when addressing the compositionality issue. Indeed, in the spirit
of [25], at each procedure call, the callee has only access to the part of the heap that is
reachable from its actual parameters. The use of such local heaps is delicate due to the
fact that there are relations between the elements of the local heap of the callee, and of
the heaps of the procedures that are in the call stack. If these relations are lost during the
analysis, this one can be unsound in some cases, or very imprecise in others. However, it
is not feasible to maintain explicitly these relations during the analysis.

Thus, a compositional and accurate inter-procedural analysis requires to define an
operation for composing abstract domains (e.g., first-order formulas with multiset con-
straints, or first-order formulas of different types). We have proposed such an operation
based on unfolding/folding of lists. This operation can be used, at procedure calls and
returns, to (1) compute an over-approximation of the intersection between a first-order
formula and a multiset constraint and (2) to convert universal formulas of some kind
(e.g., sorting) to formulas of some other kind (e.g. list equality).

Beyond compositional summary computation, the operation we have defined for com-
bining abstract domains allows to tackle two other interesting problems. First, it allows
to define a slightweight sound (but not complete) decision procedure for such kinds of
formulas, which is useful for carrying out pre-post condition reasoning. Furthermore, our
techniques are accurate enough to be used for automatic procedure equivalence checking.
It is easy to see that this problem can be reduced to inter-procedural analysis, provided
that it is possible to express equality between structures, and derive such properties.
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We have implemented our inter-procedural analysis in a plugin called Celia of the
Frama-C platform [10] for C program analysis. Celia checks first that the program
is in the class dealt by the analysis (i.e., programs with singly linked lists). Then, it
applies the inter-procedural analysis on the inter-procedural control flow graph built by
Frama-C from the C program. The implementation of Celia invokes/adapts (1) the
heap abstract domains of universal formulas and multi-set constraints provided by the
cinv tool [3], (2) the numerical domains of the apron platform [22], and (3) the generic
module of fixpoint computation over control-flow graphs due to B. Jeannet [21]. It has
been carried out by implementing in C the abstract transformers including the abstract
domain combination/strengthening.

4 Sequential Programs with Integer and Pointer Variables

The current work of the VERIMAG team addresses the problem of verification of certain
intrinsic (non-specified) errors in C programs, which involve manipulation of infinite data
structures such as integers, arrays and pointers, without recursive data structures (such
as lists, trees, etc.). Such programs are commonplace in industrial control software, such
as the case study supplied by the EDF team during the first year of the project. Our
verification techniques are based on the model of counter automata.

Counter automata (equivalently, non-deterministic integer programs) are important
models of computation, that can naturally encode many classes of systems with un-
bounded (or very large) data domains, such as hardware circuits with cache memory,
programs with integer variables, integer arrays and recursive data structures. Moreover,
recent research has revealed several methods reducing verification problems of several
classes of systems to decision problems on counter automata in a more practical way,
hence the growing interest for analysis tools working on counter automata. Examples
of such systems that can be effectively verified by means of counter automata include:
specifications of hardware components [28], programs with singly-linked lists [4, 16, 9],
trees [19], and integer arrays [7].

The work of the VERIMAG team aims at reducing the verification of C code to the
reachability problem of a counter automaton. Currently we are developping a FRAMA-C

plugin (called FLATA-C) that translates C programs into counter automata by tracking
down the following types of data manipulations:

1. test and updates of integer variables are mainly considered in order to obtain a
precise representation of the program. Abstracting away integer variables that occur
within if-then-else and while conditional statements would increase the loss of
information due to abstraction.

2. updates of array indices are represented in our models, in order to detect array-out-
of-bounds errors in C programs.

3. pointer allocation, deallocation and arithmetic are modeled as operations on integer
counters. The extracted models allow to reduce intrinsic program errors such as:
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• freeing a pointer variable not referencing an allocated zone,

• accessing data via a non-aligned pointer

to the reachability of an error state in a counter automaton.

The FRAMA-C slicing plugin is used first to strip the source code of irrelevant data types
and statements. Slicing is however a very conservative technique which will keep certain
variables upon which relevant data depends. In addition to slicing, we use abstraction
(i.e., we introduce non-deterministic choices) in order to eliminate completely references
to variables of types other than numeric or pointer. The translation to counter automata
maintains the functional structure of the program (i.e. each C function is compiled to a
different counter automaton).

Given a counter automaton, we aim at computing the relation between the input and
the output counter valuations, whenever this relation can be expressed in Presburger
arithmetic. In cases where the precise relation cannot be expressed in Presburger arith-
metic, we stop the computation and return an under-approximation of the relation. The
main application of deriving the input-output relation of a counter automaton in a decid-
able logic is an algorithm for verifying safety properties of systems, which can be encoded
as reachability conditions.

At the heart of our method lies a technique for computing transitive closures of loops
labeled by conjunctive transition relations. In general, the transitive closure of linear
relations falls outside of known decidable fragments of arithmetic. To this end, it is
important to know for which classes of transition relations it is possible to compute the
transitive closure precisely and fast – the relations falling outside these classes being dealt
with using suitable abstractions. The three main classes of integer relations for which
transitive closures can be computed precisely in finite time are: (1) difference bounds

constraints [11, 6], (2) octagons [24, 5], and (3) finite monoid affine transformations [2, 15].
For these three classes, the transitive closures can be effectivelly defined in Presburger
arithmetic.

We have studied the three non-trivial classes of relations mentioned in the previous
and we have shown that they are ultimately periodic, i.e. that each relation R in these
classes can be mapped into an integer matrix MR such that the sequence {MRk}∞

k=0 is
periodic. The proof of the fact that a sequence of matrices is ultimately periodic relies
on a result from tropical semiring theory [27]. This provides shorter proofs to the fact
that the transitive closures for these classes can be effectivelly computed, and that they
are Presburger definable.

Our algorithm computes the transitive closure of difference bounds and octagonal
relations up to four orders of magnitude faster than our original methods from [6, 5], and
also scales much better in the number of variables.

Last, we gave a semi-algorithmic method for computing the input-output relation of
a counter automaton. The algorithm builds the relation incrementally, by eliminating
control states and composing incoming with outgoing relations. The main difficulty here
is the elimination of states with several self-loops. We tackle this issue by first computing
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the transitive closures of the self-loops individually, and then exploring all interleavings
between them, until no new relations are discovered. Obviously, this exploration might
not end, in which case we stop it at a certain depth and return an underapproximation
of the transitive closure.

The techniques reported here are implemented in the FLATA toolset [17] for the anal-
ysis of counter automata models. So far, this toolset has been succesfully applied on
models that where automatically generated from VHDL specifications of hardware, pro-
grams with lists, and verification conditions of programs with integer arrays. We are
currently developing a FRAMA-C plugin that will extend the input of the FLATA tool to
real-life C programs.

5 Implementation and Test Cases

This section reports on the status of the prototype tools developped by the consortium.
Currently there are two analysis tools targetting two classes of sequential C programs:

• the CINV tool, developped by the LIAFA team, for the synthesis of invariants for
programs with lists and numeric data

• the FLATA tool, developped by the VERIMAG team, for the verification of programs
with integers, arrays and pointers.

Both tools connect to the C language via two Frama-C plugins, namely CELIA for CINV,
and FLATA-C for FLATA.

Tool distribution All tools are available for download under LGPL license
(http://www.gnu.org/licenses/lgpl.html) from the following locations:

• CINV: http://www.liafa.jussieu.fr/cinv/index.html

• FLATA: http://www-verimag.imag.fr/FLATA.html

5.1 Programs with lists

Celia has been applied to a benchmark of C programs. Table 1 describes some of our
experimental results on the synthesis of procedure summaries. In this table, programs
are classified in six classes. The class sll includes C functions performing elementary
operations on list: add ing/deleting the f irst/last element, init ializing a list of some
length. These operations are common in libraries for linked lists, e.g., linux/list.h of
the Linux distribution. The classes map and map2 include C functions performing a
traversal of one resp. two lists, without modifying their structures, but modifying their
data. The classes fold and fold2 include C functions computing from one resp. two
input lists some output parameters of type list or integer. Finally, the sort class includes
sorting algorithms on lists. The procedures in classes map* and fold* are tail recursive,
thus we consider for them both iterative and recursive versions. The third column of
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class fun nesting M U Examples of summaries synthesized

(loop,rec) t (s) t (s)

init (0,−) < 1 < 1
addfst – < 1 < 1

sll addlst (0, 1) < 1 < 1 ρ
#

U
(init(&x, ℓ)) : hd(x) = 0 ∧ len(x) = ℓ ∧ ∀y ∈ tl(x) ⇒ x[y] = 0

delfst – < 1 < 1
dellst (0, 1) < 1 < 1

init(v) (0, 1) < 1 < 1 ρ
#

U
(init(v, x)) : len(x0) = len(x)∧hd(x) = v∧∀y ∈ tl(x). x[y] = v

map initSeq (0, 1) < 1 < 1 ρ
#

U
(add(v, x)) : len(x0) = len(x) ∧ hd(x) = hd(x0) + v∧

add(v) (0, 1) < 1 < 1 ∀y1 ∈ tl(x), y2 ∈ tl(x0). y1 = y2 ⇒ x[y1] = x0[y2]+v

map2 add(v) (0, 1) < 1 < 1 ρ
#

U
(add(v, x, z)) : len(x0) = len(x)∧len(z0) = len(z)∧eq(x, x0)∧

copy (0, 1) < 1 < 1 ∀y1 ∈ tl(x), y2 ∈ tl(z). y1 = y2 ⇒ x[y1] + v = z[y2]

delPred (0, 1) < 1 < 1 ρ
#

M
(split(v, x, &l, &u)) : ms(x) = ms(x0) = ms(l) ∪ ms(u)

fold max (0, 1) < 1 < 1 ρ
#

U
(split(v, x, &l, &u)) : equal(x, x0) ∧ len(x) = len(l) + len(u)∧

clone (0, 1) < 1 < 1 l[0] ≤ v ∧ ∀y ∈ tl(l) ⇒ l[y] ≤ v∧

split (0, 1) < 1 < 1 u[0] > v ∧ ∀y ∈ tl(u) ⇒ u[y] > v

equal (0, 1) < 1 < 1 ρ
#

M
(merge(x, z, &r)) : ms(x) ∪ ms(z) = ms(r)∧ ms(x0) = ms(x)∧ . . .

fold2 concat (0, 1) < 1 < 3 ρ
#

U
(merge(x, z, &r)) : sorted (x0) ∧ sorted(z0) ∧ sorted (r)∧

merge (0, 1) < 1 < 3 equal(x, x0)∧equal(z, z0)∧len(x)+len(z) = len(r)

bubble (1,−) < 1 < 3

sort insert (1,−) < 1 < 3 ρ
#

M
(quicksort(x)) : ms(x) = ms(x0) = ms(res)

quick (−, 2) < 2 < 4 ρ
#

U
(quicksort(x)) : equal(x, x0) ∧ sorted (res)

merge (−, 2) < 2 < 4

Table 1: Experimental results for functions in the benchmark for lists.

Table 1 specifies the versions considered (iterative/recursive) and the number of nested
loops or recursive calls.

Columns 4–5 provide (upper bounds on) the running time of the analysis for the
multiset abstract domain (denoted by M) and the universal formulas domain (denoted
by U). Column 6 shows samples of procedure summaries (denoted by ρ#) that Celia can
synthesize with each abstract domain. All experiments have been done on an Intel686
with 4GHz and 4Go of RAM.

5.2 Counter Automata

This section reports on experiments we have performed with the FLATA toolset, to
decide reachability in several counter automata, modeling real-life systems. We have
experimented on three sets of counter automata. The first set of models we considered
is taken from [28], where an approach for verification of generic VHDL circuit designs
based on translation to counter automata is presented. Traditional verification techniques
for hardware systems usually assume that the state space of these systems is finite.
The approach presented in [28] aims at verification of parameterized VHDL components
with infinite state space. These generic components allow for the creation of libraries of
reusable hardware, and are therefore commonplace in practice.

The translation to counter automata described in [28] maps bit variables to control
locations, and integer variables to counters. Various safety properties are encoded as bit
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variables whose values are equivalent to propositional logic formulae representing the bad
(unsafe) states.

We report on three out of the total five models from [28] (the remaining two are
currently beyond the capabilities of FLATA and are a source of motivation for our fu-
ture work). For the component of a hardware counter, we check whether overflow of a
parametric bound is possible. For the register component, we check if the reset works
correctly. The synlifo is a synchronous LIFO component with push and pop operations,
which implements signals empty and full. The property checks if these signals are set
correctly for a LIFO container of arbitrary size. Additionally, we have created buggy
versions of these models (counter-bug, register-bug, and synlifo-bug).

The second set of examples are counter automata generated from programs with singly-
linked lists, using the approach described in [8]. The main idea is that the set of heaps
generated by a program with a finite number of local variables can be represented by a
finite number of shape graphs, and the (unbounded) lengths of various list segments can
be tracked by counters. The result of the translation of a program with lists is a counter
automaton whose transition semantics is in bisimulation with the original program.

For all singly-linked list programs, we check that there are no null pointer dereferences.
The InsDel program inserts elements to an empty list non-deterministically many times
while counting the number of insertions and then traverses this number of elements and
deletes each traversed element. Here we also check whether the list is empty when the
program ends. The ListCounter program counts the length of a list during a first
traversal of the list, which increments a counter. Here we also check that the length of
the list is unchanged, and equal to the final value of the counter. The ListReversal is
a textbook program that returns a list containing the same elements as the input list, in
the reversed order. The reversal is done in place, by changing the links between the cells,
instead of creating a copy of the input list. Here we also check that the lengths of the
input list equals the length of the output list.

The third set of counter automata models are given by the decision procedure of
the array logic SIL (Singly Indexed Logic), described in [20]. The decidability of the
satisfiability problem for SIL encodes the set of models of a formula as the union of
sets of traces of a set of flat counter automata with difference bounds constraints, whose
emptiness is known to be decidable e.g., [11, 15]. Since FLATA is guaranteed to terminate
on flat models with ultimately periodic relations on loops, we can use it as a solver for
the SIL logic.

We report on two SIL formulae which arise as verification conditions for loop invariants
of array manipulating programs. The array rotation program rotates an array by one
element to the left and the array split program splits an array to negative and non-
negative parts. Both formulae are translated to a pair of counter automata, hence Table
2 reports the results of analyses as sum of the number of states, transition and verification
times for both automata.

We have compared the performance of FLATA with other existing tools for the analysis
of counter automata. The FAST tool [1] is based on the acceleration of loops with finite
monoid affine transformations – we have used FAST with four different plugins for solving
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x′ = 0 x = 5

x′ = x + 2

x′ = x − 2

Figure 3: The modulo counter automaton.

model |Q| |T | FLATA ARMC
FAST

ASPIC
MONA PRESTAF

counter 6 13 0.8 0.1 0.7 0.7 0.1
counter-bug 6 13 0.9 0.1 0.7 0.7 D

register 10 49 0.9 0.1 0.14 0.5 0.1
register-bug 10 49 0.9 0.1 0.14 0.5 D

synlifo 43 1006 25 1.5 500 112 1.7
synlifo-bug 43 1006 15 1.5 419 101 D
insdel-bug 31 37 0.4 0.2 225.3 21.4 D
listreversal 97 107 6.2 42.6 T E 0.2

listreversal-bug 99 107 2.4 0.2 T T D
listcounter 31 35 1.0 2.9 178.7 14 0.1

listcounter-bug 31 34 0.5 0.1 T T D
split 61 329 9.6 1.2 C C C

rotation 33 147 5.7 0.6 C C C
modulo 3 4 0.7 T 0.1 0.4 D

Table 2: Reachability comparison (time in seconds). T – time-out 14min, E – segmentation fault, D –
"don’t know", C – incompatible (non-deterministic) relations

Presburger queries: MONA [23] (finite automata), Prestaf [13] (shared automata), Omega
[14] (quantifier elimination) and LASH [29] (numeric decision diagrams). The ARMC tool
[26] uses predicate abstraction and interpolation-based abstraction refinement. The AS-
PIC tool [18] uses widening-based abstract interpretation. Table 2 gives the performance
comparison of various tools for the reachability analysis of counter automata on the set
of examples described above.

One can notice from the times reported in Table 2 that tools based on abstraction
(ARMC, ASPIC) are in general faster than the ones based on precise acceleration of
loops (FAST, FLATA), the reason being that abstraction greatly simplifies the models
used in the analysis. On the other hand, the imprecision introduced often leads to “don’t
know” answers (ASPIC) or extra iterations of the abstraction-refinement loop (ARMC).

Another problem of the methods purely based on abstraction is the modulo counter
automaton depicted in Figure 3. In order to prove that this automaton is empty, one
must prove that “x is even” is an invariant of the system. In our experience, FAST and
FLATA could prove this property, whereas ARMC and ASPIC could not (cf. Table 2).
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6 Ongoing and Future Work

As a short-term goal, we plan on finishing the implementation and testing of the tools
on larger C programs, including examples provided by the EDF partner, as well as from
the public domain, e.g. the LINUX distribution. We also plan a tighter integration of
the tools, by using FLATA as a back end for the CINV tool, in order to explore the use of
acceleration techniques to extract more precise invariants for programs with lists.

In particular, the VERIMAG team plans to investigate the extension of compositional
verification techniques from sequential to concurrent counter models. These results will
be applied to multithreaded C programs with integer and pointer (array) variables.

On the LIAFA side, further work includes (A) the generalization of their framework
to structures such as multi-linked lists, trees, and nested structures, and (B) the use of
program slicing in order to accept more programs than the ones using only dynamic data
structures.

The CEA has been working on a Frama-C plugin for the study of concurrent code.
The plug-in uses a least-fixpoint approach to combine sequential analyses of the various
threads, in order to obtain a safe approximation of the concurrent behaviour of the
program. Once this is done, all statements relevant for the concurrent behaviour will be
known, and it will be possible to slice on those statements.
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