
Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

Acronyme/Acronym VERIDYC

Titre du projet Verification des programmes C dynamiques

Proposal title VERIfication of DYnamic C programs

Deliverable II Concurrent Programs with Simple Data Structures /
Sequential Programs with Composite Data Structures

Table des matières

1 Introduction 2

2 Static Analysis of Concurrent Programs 2
2.1 General architecture . 2
2.2 Precision . 4

2.2.1 Context-sensitivity . 4
2.2.2 “Happened-after” relation . 4

2.3 Exploiting the locked mutexes information 4
2.4 Slicing of concurrent programs . 5

3 Models of Concurrency 6
3.1 Concurrent Programs with Singly-Linked Lists 6
3.2 Analysis of Recursively Parallel Programs 9

4 Sequential Programs with Complex Data Structures 10
4.1 Program Verification using Forest Automata 10
4.2 Doubly-linked Lists with Integer Values 13
4.3 Shallow Pointers and Pointer Arithmetic 14

5 Industrial Test Cases 16
5.1 Rotating Buffer . 16
5.2 Mthread Test Case . 17

6 Ongoing and Future Work 19

1/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

1 Introduction

During the second year of the project, the members of the consortium have developped
several methods for the verification of the following types of programs:
1. Concurrent programs with simple data structures: work on concurrent programs has

been pursued along three complementary directions, detailed in the following.
(a) Efficient model extraction techniques based on static analysis, including a gen-

eral library-independent value analysis for multithreaded programs (the Mthread
plugin)

(b) Proof checking of concurrent programs handling singly-linked lists; besides mem-
ory consistency, this work targets the detection of race conditions of un-joined
threads (the Cheap plugin)

(c) A theoretical study of complexity of verification problems within alternative
concurrent models (e.g. Cilk, X10, etc.)

2. Sequential programs with composite data structures: work on sequential programs
with complex data structures has been pursued along three complementary direc-
tions.
(a) An efficient symbolic representation based on forest automata and tool support

for C programs with tree-like data structures (e.g. tree with head pointers, etc.)
(b) Extension of the Celia plugin to doubly-linked lists with integer data values
(c) Extended tool support for programs with shallow pointers and pointer arithmetic

via the common Numerical Transition Systems interface (the Flata-C
plugin)

Concerning the experimental part, we have considered a new concurrent example in
which several (reader and writer) processes communicate using a buffer-like data structure
implemented using arrays and pointer arithmetic. This example is currently analysed by
the Flata-C plugin.

2 Static Analysis of Concurrent Programs

During the course of the second year, the CEA has developed a Frama-Cplugin,
Mthread, to handle concurrent code. This plugin reuses Frama-C’s existing abstract-
interpretation based plugin, Value, and extends it to obtain an over-approximation of
the behavior of multi-threaded programs.

2.1 General architecture

Figure 1 presents a high-level overview of Mthread. The C input code is parsed by
Frama-C, as for any plugin. Then, Mthread analyzes the program. Each thread is ana-
lyzed independently by Frama-C’s Value Analysis. 1 This produces an over-approximation

1. Starting from the main thread. Threads are discovered automatically, each time Value analyzes a call to a thread
creation primitive.

2/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

C Source Code

Frama-C-Value Mthread

Mthread analysis

CCFG Shared memory Mutexes

Figure 1: High-level overview of Mthread

of the sequential behavior of the threads, by construction. However, this is not a cor-
rect over-approximation of the concurrent behavior of the program, as the interactions
between the threads are not taken into account. Thus, Mthread confronts the various
sequential approximations, to discover:
1. all the memory locations that are accessed by at least two threads;
2. the messages that are sent by explicit message-passing, and on which message queue

those messages are sent;
3. the mutexes that are locked when the above multithreaded events occur.

Using type 1 and 2 information, we re-analyze all the threads that read shared memory,
or received messages. This time, we take into account the concurrent data that has been
emitted during the first analysis of the threads. Shared zones are marked as volatile,
which is a correct (albeit a bit imprecise) approximation. Messages sent on a queue q by
a thread t are received each time a thread t′ 6= t reads on q.

If no new data is written or sent during this second analysis, we have obtained an
over-approximation of the concurrent behavior of the program. If this is not the case, we
repeat the process above until a fixpoint is reached. Convergence is ensured because:

– there are only a finite possible set of shared zones, as the Value Analysis does not
handle fully general dynamic allocation;

– if needed, the contents of emitted messages are over-approximated using the widen-
ing operation already present in the sequential analysis.

At the end of the analysis, the plugin emits three outputs:
1. a concurrent control-graph, which is similar to a very aggressive slicing of the pro-

gram; see §2.4 and §5.2 for more details;
2. all the memory zones that are shared amongst multiple threads, with detailed infor-

mation on which functions access them;

3/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

3. the mutex information described in §2.3.

2.2 Precision

The approach presented above is always sound, as it produces a correct over-approximation
of the behaviors of all the threads of the program. However, it is also important to remain
precise. We have thus implemented two optimizations, presented below.

2.2.1 Context-sensitivity

It is crucial to have a context-sensitive analysis, meaning that a function f called
by two functions g1 and g2 is analyzed separately in the two calling contexts. This is
particularly important because embedded code often encapsulates calls to concurrency
primitives within its own functions, typically to simplify return codes.

Mthread is fully context-sensitive: as soon as a function is reached through two
different paths (that is, two differing Value Analysis call-stacks), two different analyzes
contexts are created by Mthread. This is consistent with what is done by Value,
which proceeds by recursive inlining.

2.2.2 “Happened-after” relation

Mthread tries to sequence events, so that if e1 is guaranteed to always occur before
e2, then e2 will not influence the analysis of e1. For now, Mthread takes into account
the fact that a thread has not yet been created, or has been canceled. In the following
example, the zone v is detected as not shared, as the possibly concurrent access in t0
occurs before t1 has been created.

t0 :
v = 1;
a = v; // Only possible value for a: v
create(t1);

t1 : v == 2;

In the future, we will try to enrich this “happened-after” relation so that it handles
condition variables, as those are often used in concurrent C code.

2.3 Exploiting the locked mutexes information

The mutexes information collected by Mthread is, for now, informative only — that
is, it does not influence the other analyses. However, the user can use it to check that
a shared memory zone is consistently protected by at least one mutex each time it is
accessed in a concurrent setting. A typical result is given below. 2

[bufTSDU.bufHead] write unprotected, read protected by (?)&bufTSDU+24

read by _main_ at sources/Buffertournant.c:399, unprotected,
// Buf_Free (sources/Analyseur.c:496) <-

Stop_Analyseur (sources/Analyseur.c:744) <-
main (sources/Analyseur.c:578)

2. This result is extracted from the example presented in §5.2.

4/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

read by &srcThreadTSDU at sources/Buffertournant.c:265, protected by
&bufTSDU+24,
// Buf_Get (sources/tsdu.c:94) <-

srcThreadTSDU (sources/tsdu.c:72)

write by _main_ at sources/Buffertournant.c:400, unprotected,
// Buf_Free (sources/Analyseur.c:496) <-

Stop_Analyseur (sources/Analyseur.c:744) <-
main (sources/Analyseur.c:578)

This output means that the field bufHead of the global variable bufTSDU is accessed
concurrently by the main thread and the thread srcThreadTSDU. Mthread indicates
that the second thread locks a mutex, named &bufTSDU+24 here, when it accesses the
field. However, this is not the case of the main thread. Hence there might be a race
condition when accessing this memory zone. Notice that fully contextual call-stacks are
given when describing each access, to ease user comprehension.

The results of our mutex analysis is similar to the one of LockSmith [26], and our
approach is similar to theirs: identifying shared memory, propagating locked mutexes
along the control-flow graph, etc. However, the methods differ significantly. LockSmith
uses dedicated analyzes, that are specialized for this task. This ensures that their analysis
is fast. On the contrary, Mthread reuses most of the machinery of Frama-C’s Value
Analysis, which usually gives more precise results, as well as a wealth of other information.

2.4 Slicing of concurrent programs

Once it has reached a fixpoint, Mthread automatically builds a concurrent control-
flow graph (CCFG) for each thread of the program. The CCFG is an inter-procedural
control-flow graph, in which each function is inlined at its call point. However, we restrict
the CCFG to concurrent events, that are defined as

– a call to a concurrent primitive: thread creation, mutex lock or release, message
sending etc.

– a read or write access to a shared memory zone.
More precisely, we remove from the CCFG every subgraph that does not contain a con-
current event. In the resulting graph, we also remove non-concurrent nodes that do not
modify the control flow. With those restrictions, CCFG are usually quite small, and very
readable. An example is given in §5.2.

Using the CCFG it is possible to slice the program to keep only the instructions
relevant for the concurrent behavior. For a thread t, the slicing criterion is simply the
following:

Keep all the source code instructions that gave rise to a concurrent event within the
CCFG.

Calling Frama-C’s sequential slicing on the final Value Analysis of t, with this criterion,
results in a program with the following characteristics:

5/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

– all function calls to a concurrent primitive reachable by t are kept — by construction
of the criterion;

– all instructions that are useful for computing sent messages, or values inside shared
memory, are kept — by definition of a correct slicing.

Thus, we obtain a correct slicing of the program for each thread.

3 Models of Concurrency

3.1 Concurrent Programs with Singly-Linked Lists

Cheap is a Frama-C plugin. It is based on the Heap-Hop tool [33] developed at LSV. It
is a proof checker for concurrent heap-manipulating programs written in C and annotated
with pre/post conditions, loop invariants, and lock invariants. It guarantees the absence
of errors with respect to heap manipulation (including memory leaks), race conditions,
or unjoined threads.

3.1.0.1 Programs that can be analyzed Cheap targets the programs that may manip-
ulate heap-allocated recursive data structures (lists, doubly-linked lists, or trees), create
and join threads, and synchronize through heap-allocated locks. For simplicity, Cheap
assumes a unique type of cell.

s t r u c t _cell {
i n t val;
i n t lock; // <- reserved
s t r u c t _cell *tl;
s t r u c t _cell *left;
s t r u c t _cell *right;

};
typede f s t r u c t _cell cell;

Cell fields can be dereferenced and updated using standard C syntax, at the exception
of the lock field, which is assumed to be a reserved field (hence the type of this field
should be thought as some abstract type lock instead of int). The only other operations
on cells that are currently handled by Cheap are the following ones

cell *new();
vo id dispose(cell *c);
const cell *nil = (cell *)0;

vo id init_lock(cell *x);
vo id finalize_lock(cell *x);
vo id lock(cell *x);
vo id unlock(cell *x);

i n t spawn(cell *f(cell *),
cell *c);

cell *join(i n t tid);

When a cell c is allocated by a call c=new(), the field c->lock does not refer to a valid
lock. After a call to init_lock(c), a lock has been allocated in the heap and has been
associated to the cell c (it is morally pointed to by c->lock). Before disposing a cell
c, its associated lock should be disposed as well by a call to finalize_lock(c). Cheap
makes some assumptions on the lock library: locks are not reentrant, and they can be
released by a thread even if it was acquired by a different thread. Cheap however prevents

6/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

releasing non-acquired locks. For instance, lock(c);lock(c) always deadlocks, whereas
(lock(c);lock(c))||unlock(c) may sometimes terminate, but can’t be accepted by
Cheap whatever the annotations are.

A call to spawn(f,c) creates a new thread that runs the function f with parameter
c, and returns the thread identifier (tid) of this new thread to the caller. The tid can
later be used by any other thread to wait for the termination of this thread, obtaining
then the return value of f(c). If the return value of spawn is ignored by the caller, it
is assumed that the spawned thread is detached, and one does not report an error for it
not being joined.

3.1.0.2 Example We have used this cell structure and these primitives to implement a
fine-grained concurrent multi-set. The multi-set is represented by an ordered list; it is
possible to add a value, to remove it, or to check if it belongs to the multiset. All of
these actions may happen concurrently on disjoint regions of the list: in a first phase, a
traversal of the list with hand-over-hand locking determines the region of the list where
the action has to occur, then in a second phase the specific action is performed.

cell *locate(i n t i) {
cell *pred = Head;
lock(pred);
cell *cur = pred ->tl;
lock(cur);
wh i l e (cur ->val < i) {

unlock(pred);
pred = cur;
cur = cur ->tl;
lock(cur);

}
r e tu rn pred;

}

i n t membership(i n t i) {
cell *pred= locate(i);
cell *cur = pred ->tl;
i n t res;
i f (cur ->val==i) res=1;
e l s e res =0;
unlock(pred);
unlock(cur);
r e tu rn res;

}

vo id add(i n t e) {
cell *pred = locate(e);
cell *cur = pred ->tl;
i f (cur ->val!=e) {

cell *c = new();
c->val = e;
c->tl = cur;
pred ->tl = c;
init_lock(c);
unlock(c);

}
unlock(pred);
unlock(cur);

}

vo id remove(i n t e) {
cell *pred = locate(e);
cell *cur = pred ->tl;
i f (cur ->val==e) {

pred ->tl = cur ->tl;
finalize_lock(cur);
dispose(cur);

} e l s e unlock(cur);
unlock(pred);

}

3.1.0.3 How Cheap can be used The current version of Cheap is a stand-alone frama-C
plugin. It can be called on command-line, specifying which C file should be analyzed.
It analyzes each function independently, and returns an error message for each function
for which it found that the given annotations were incorrect. The error message explains
why the symbolic execution failed (see paragraph “Internals” below), and which line of
the original C file corresponds to the step of the symbolic execution that failed. The
current version of Cheap generates the following output on the annotated version of the
concurrent multi-set described above:

./frama-c-CheapPlugin.byte examples/lock-coupling-lists.c

7/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

[kernel] preprocessing with
"gcc -C -E -I. examples/lock-coupling-lists.c"

[cheap] If the specs are Valid (see end of output),
the program will enjoy the following properties:

+ there is no memory fault or race
+ there is no leak

Function remove

Function membership

Function locate

Function add
[cheap] Valid

3.1.0.4 Distribution Cheap is under final cleaning. It is planned to be released in june
2012, with a list of case studies and a short tutorial. The exact public license has not
been determined yet (there are dependencies with frama-C, under GNU LGPL v2, and
Heap-Hop, under Q public license).

3.1.0.5 Internals Cheap transforms an annotated C program in a set of verification
conditions of the form {pre}p{post} where p is a loop-free sequential program. A symbolic
execution is then executed for each verification condition – this is mostly an incomplete
calculus of strongest post-condition. The execution may fail before the strongest post-
condition of the entire p has been computed, because at some intermediate step the
precondition cannot guarantee that the next instruction is safe.

The language of annotations used by Cheap is an adaption of the one of Heap-Hop
that respects the syntactic conventions of ACSL. Although it is accepted by the frama-
C parser for ACSL, it does not follow the informal semantics of ACSL. A fundamental
difference is that the conjunction symbol && is understood by Cheap as the separating
conjunction of separation logic. The Cheap language is far less expressive than the ACSL
language. It assumes only a small set of basic predicates dealing with heap structures,
threads, and locks, and cannot handle any user-defined predicate (in particular, recursive
ones).

The symbolic execution of Heap-Hop has been enhanced in several ways: for instance,
it now supports derouting C primitives (break,return,continue), and it can deal with
heap-allocated locks and threads (whereas the closest features Heap-Hop could handle
were conditional critical sections and a simple form of parallel function calls).

A good introduction to the techniques used by Cheap and Heap-Hop can be found in
the papers of the Smallfoot tool [2, 3] for the most general aspects, and in a paper by
Gotsman & al [11] for the specific treatment of locks and threads. The Verifast tool [18]

8/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

also offers a support for thread creation and heap-allocated locks: it is based on a richer
language of annotations, but it requires a larger amount of annotations in order to guide
the symbolic execution.

3.2 Analysis of Recursively Parallel Programs

Despite the ever-increasing importance of concurrent software (e.g., for designing reac-
tive applications, or parallelizing computation across multiple processor cores), concurrent
programming and concurrent program analysis remain challenging endeavors. The most
widely available facility for designing concurrent applications is multithreading, where
concurrently executing sequential threads nondeterministically interleave their accesses
to shared memory. Such nondeterminism leads to rarely-occurring “Heisenbugs” which
are notoriously difficult to reproduce and repair. To prevent such bugs programmers
are faced with the difficult task of preventing undesirable interleavings, e.g., by employ-
ing lock-based synchronization, without preventing benign interleavings—otherwise the
desired reactivity or parallelism is forfeited.

The complexity of multi-threaded program analysis seems to comply with the per-
ceived difficulty of multi-threaded programming. The state-reachability problem for
multi-threaded programs is PSPACE-complete [20] with a finite number of finite-state
threads, and undecidable [28] with recursive threads. Current analysis approaches either
explore an underapproximate concurrent semantics by considering relatively few inter-
leavings [22, 8] or explore a coarse overapproximate semantics via abstraction [9, 14].

Explicitly-parallel programming languages have been advocated to avoid the intricate
interleavings implicit in program syntax [24], and several such industrial-strength lan-
guages have been developed [13, 29, 7, 1, 25, 6, 32]. Such systems introduce various
mechanisms for creating (e.g., "fork", "spawn", "post") and consuming (e.g., "join",
"sync") concurrent computations, and either encourage (through recommended pro-
gramming practices) or ensure (through static analyses or runtime systems) that par-
allel computations execute in isolation without interference from others, through data-
partitioning [7], data-replication [6], functional programming [13], message passing [27],
or version-based memory access models [32], perhaps falling back on transactional mech-
anisms [23] when complete isolation is impractical. Although few of these systems behave
deterministically, consuming one concurrent computation at a time, many are sensitive to
the order in which multiple isolated computations are consumed. Furthermore, some al-
low computations creating an unbounded number of sub-computations, returning to their
superiors an unbounded number of handles to unfinished computations. Even without
multithreaded interleaving, nondeterminism in the order in which an unbounded number
of computations are consumed has the potential to make program reasoning complex.

In this work, we (group of LIAFA) investigate key questions on the analysis of
interleaving-free programming models. Specifically, we ask to what extent such models
simplify program reasoning, how those models compare with each other, and how to
design appropriate analysis algorithms. We attempt to answer these questions as follows:

– We introduce a general interleaving-free parallel programming model on which to

9/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

express the features found in popular parallel programming languages.
– We discover a surprisingly-complex feature of some existing languages: even simple
classes of programs with the ability to pass unfinished computations both to and
from subordinate computations have undecidable state-reachability problems.

– We show that the concurrency features present in many real-world programming
languages such as Cilk, X10, and Multilisp are captured precisely (modulo the pos-
sibility of interleaving) by various fragments of our model.

– For fragments corresponding to real-world language features, we measure the com-
plexity of computing state-reachability for finite-data programs, and provide, in
most cases, asymptotically optimal state-reachability algorithms.

Our focus on finite-data programs without interleaving is a means to measuring complex-
ity for the sake of comparison, required since state-reachability for infinite-data or multi-
threaded programs is generally undecidable. Applying our algorithms in practice may rely
on data abstraction [12], and separately ensuring isolation [23], or approximating possible
interleavings [22, 8, 9, 14]; still, our handling of computation-order non-determinism is
precise.

The major distinguishing language features are whether a single or an arbitrary number
of subordinate computations are waited for at once, and whether the scope of subordi-
nate computations is confined. Generally speaking, reasoning for the “single-wait” case is
less difficult than for the “multi-wait” case, and we demonstrate a range of complexities 3
from PTIME, NP, EXPSPACE, and 2EXPTIME for various scoping restrictions. Despite
these worst-case complexities, a promising line of work has already demonstrated effective
algorithms for practically-occurring EXPSPACE-complete state-reachability problem in-
stances based on simultaneously computing iterative under- and over-approximations,
and rapidly converging to a fixed point [10, 19].

We thus present a classification of concurrency constructs, connecting programming
language features to fundamental formal models, which highlight the sources of concurrent
complexity resulting from each feature, and provide a platform for comparing the difficulty
of formal reasoning in each. We hope that these results may be used both to guide
the design of impactful program analyses, as well as to guide the design and choice of
languages appropriate for various programming problems. This work has been published
in [4].

4 Sequential Programs with Complex Data Structures

4.1 Program Verification using Forest Automata

During the second year of the project, the LIAFA team (Peter Habermehl) as well
as VERIMAG (Jiri Simacek) have worked on a method for verifying sequential pro-
grams with complex dynamic linked data structures such as various forms of singly- and

3. In order to isolate concurrent complexity from the exponential factor in the number of program variables, we consider
a fixed number of variables in each procedure frame; this allows us a PTIME point-of-reference for state-reachability in
recursive sequential programs [30].

10/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

doubly-linked lists (SLL/DLL), possibly cyclic, shared, hierarchical, and/or having dif-
ferent additional (head, tail, data, and the like) pointers, as well as various forms of trees.
We in particular consider C pointer manipulation, but our approach can easily be applied
to any other similar language. For example we can handle the Deutsch-Schorr-Waite tree
traversal algorithm which traverses a tree by just redirecting pointers without marking
nodes.

/*
* The Deutsch -Schorr -Waite tree traversal algorithm
*/

#inc l ud e <stdlib.h>

i n t __nondet ();

s t r u c t TreeNode {
s t r u c t TreeNode* left;
s t r u c t TreeNode* right;

};

s t r u c t TreeNode* createTree () {

s t r u c t TreeNode* root = malloc(s i z e o f (s t r u c t TreeNode));
root ->left = NULL;
root ->right = NULL;
s t r u c t TreeNode* curr;
wh i l e (__nondet ()) {

curr = root;
wh i l e (curr ->left && curr ->right)

curr = (__nondet ())?(curr ->left):(curr ->right);

i f (!curr ->left && __nondet ()) {
curr ->left = malloc(s i z e o f (s t r u c t TreeNode));
curr ->left ->left = NULL;
curr ->left ->right = NULL;

}
i f (!curr ->right && __nondet ()) {

curr ->right = malloc(s i z e o f (s t r u c t TreeNode));
curr ->right ->left = NULL;
curr ->right ->right = NULL;

}
}
r e tu rn root;

}

vo id destroyTree(s t r u c t TreeNode* root) {

wh i l e (root) {
s t r u c t TreeNode* curr = root , * pred = NULL;
wh i l e (curr ->left || curr ->right) {

pred = curr;
curr = (curr ->left)?(curr ->left):(curr ->right);

}
i f (pred) {

i f (curr == pred ->left)
pred ->left = NULL;

e l s e
pred ->right = NULL;

} e l s e {
root = NULL;

}
free(curr);

}
}

vo id dsw(s t r u c t TreeNode* root) {

s t r u c t TreeNode sentinel;
s t r u c t TreeNode* pred = &sentinel;
s t r u c t TreeNode* succ = NULL;

11/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

wh i l e (root != &sentinel) {

succ = root ->left;
root ->left = root ->right;
root ->right = pred;
pred = root;
root = succ;

i f (root == NULL) {
root = pred;
pred = NULL;

}
}

}

i n t main(i n t argc , char * argv []) {
s t r u c t TreeNode* tree = createTree ();
dsw(tree);
destroyTree(tree);
r e tu rn 0;

}

In the example we have 3 procedures, one creating the tree, one traversing the tree and
one destroying the tree. Here we can verify that the pointer manipulations are correct
(no null pointer dereferences for example) and that no garbage is created.

In general, we can verify safety properties of the considered programs which includes
generic properties like absence of null dereferences, double free operations, dealing with
dangling pointers, or memory leakage. Furthermore, to check various shape properties of
the involved data structures one can use testers, i.e., parts of code which, in case some
desired property is broken, lead the control flow to a designated error location. This is
used for example to check that a doubly-linked lists stays doubly-linked after a procedure
manipulating it.

For the above purpose, we propose a novel approach of representing sets of heaps via
tree automata (TA). In our representation, a heap is split in a canonical way into several
tree components whose roots are the so-called cut-points. Cut-points are nodes pointed
to by program variables or having several incoming edges. The tree components can refer
to the roots of each other, and hence they are “separated” much like heaps described
by formulae joined by the separating conjunction in separation logic [31]. Using this
decomposition, sets of heaps with a bounded number of cut-points are then represented
by a new class of automata called forest automata (FA) that are basically tuples of TA
accepting tuples of trees whose leaves can refer back to the roots of the trees. Moreover,
we allow alphabets of FA to contain nested FA, leading to a hierarchical encoding of
heaps, allowing us to represent even sets of heaps with an unbounded number of cut-
points (e.g., sets of DLL). Intuitively, a nested FA can describe a part of a heap with
a bounded number of cut-points (e.g., a DLL segment), and by using such an automaton
as an alphabet symbol an unbounded number of times, heaps with an unbounded number
of cut-points are described. Finally, since FA are not closed under union, we work with
sets of forest automata, which are an analogy of disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we can show that inclusion of sets
of heaps represented by finite sets of non-nested FA (i.e., having a bounded number of
cut-points) is decidable. This covers sets of complex structures like SLL with head/tail

12/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

pointers. Moreover, we show how inclusion can be safely approximated for the case of
nested FA. Further, C program statements manipulating pointers can be easily encoded as
operations modifying FA. Consequently, the symbolic verification framework of abstract
regular tree model checking [5], which comes with automatically refinable abstractions,
can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., dealing
with separated parts of heaps) from separation logic into the world of automata. The
motivation is to combine some advantages of using automata and separation logic. Au-
tomata provide higher generality and flexibility of the abstraction (see also below) and
allow us to leverage the recent advances of efficient use of non-deterministic automata.
The use of separation allows for a further increase in efficiency compared to a monolithic
automata-based encoding proposed earlier [5].

We have implemented our approach in a prototype tool called Forester as a gcc plug-in
(available at http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/).
In our current implementation, if nested FA are used, they are provided manually (simi-
lar to the use of pre-defined inductive predicates common in works on separation logic).
However, we show that Forester can already successfully handle multiple interesting case
studies, proving the proposed approach to be very promising. For example, the program
above is verified in 0.7 sec.

4.2 Doubly-linked Lists with Integer Values

The team at LIAFA has also worked on the extension of the Celia tool to support the
analysis of programs manipulating doubly linked lists (DLL) storing integer data. (Notice
that the previous approach does not deal with data stored in linked structures.) Celia
has been presented in details in the previous deliverable, so we focus here only on the
extension for DLL.

The DLL-like data structures appear in the case study provided by EDF, Nagios 4,
a host/service/network monitoring program written in C and released under the GNU
GPL. This program has more than 100 Kloc and defines several recursive data structures,
mainly singly linked, doubly linked, and skip lists, as well as hash tables over these
recursive data structures. We focus on the only DLL-like data structure of Nagios, called
timed_event.The file defining the operations on this type has 1.7 Kloc and uses several
features that has to be abstracted away in order to use Celia, mainly pointers to functions,
arrays of untyped (void*) pointers, etc. The definition of this data structure and the
declaration of the main functions which have been considered for the analysis are given
in the listing below:

// Excerpt from file include/nagios.h
...
/* TIMED_EVENT structure */
typede f s t r u c t timed_event_struct{

i n t event_type;
time_t run_time; // long integer
i n t recurring;
uns igned long event_interval;

4. www.nagios.org

13/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

i n t compensate_for_time_change;
vo id *timing_func; // function pointer
vo id *event_data; // array of untyped pointers for the function pointer above
vo id *event_args; // array of untyped pointers for the function pointer above
i n t event_options;
s t r u c t timed_event_struct *next;
s t r u c t timed_event_struct *prev;
}timed_event;

/* schedules a new timed event */
i n t schedule_new_event(i n t , i n t ,time_t , i n t , uns igned long , vo id *, i n t , vo id *, vo id *, i n t);

/* reschedules an event */
vo id reschedule_event(timed_event *,timed_event **, timed_event **);

/* adds an event to the execution queue */
vo id add_event(timed_event *,timed_event **, timed_event **);

/* remove an event from the execution queue */
vo id remove_event(timed_event *,timed_event **, timed_event **);

/* resorts event list by event run time */
vo id resort_event_list(timed_event **, timed_event **);

The main idea of this work is to use an abstract domain to represent symbolically DLL
data structures. This abstract domain has to be both (1) precise in order to keep the
information about the length and data in the lists (e.g., sorting of data, data less than
some limit for each list element) and (2) efficient for analysis of the programs with such
data structures. The abstract domain used extends the existing one for singly linked lists
(SLL) as follows. Values of this domain are sets of pairs combining a graph representation
of the heap with a domain over data words which describes the data stored in the lists.
The graph representation has been fully re-implemented to support DLL. The domain
on the data words has been reused and extended with operations needed by the abstract
transformers on DLL (i.e., operators implementing the effect of a statement on some list
segment). Indeed, the data word domain of universal formulas can be used as for SLL if
we consider that the universal positions are ordered using the next field. However, since
a DLL segment may be split by a backward access using the prev field, we have added a
new split operation in each data word domain. This operation separates the last element
of the list from the beginning of the list.

Aside these main changes, we have had also to work on the extension of the interface
between the abstract domain on shape graphs in order to support multiple pointer and
data fields.

The analysis using Celia has been done after a simple but manual simplification of
the original code to remove unsupported features. The analysis have been done in a
modular way, for each function in the listing above. Celia has been able to infer invariant
properties for each function above. For example, for the add_event function is inferred
the property that the length of the list has been increased by 1; moreover, if the pre-
condition of add_event is that the input list is sorted, Celia infers that the output list
is also sorted. The last property is obtained when analyzing the resort_event_list
function, which calls the add_event function to do insertion sort wrt the run_time field.

4.3 Shallow Pointers and Pointer Arithmetic

During the second year of the project, the Verimag team has been working on verifi-
cation of C programs with low-level pointer arithmetic operations, under the assumption
that the program does not use recursively defined data structures (lists, trees, etc.), hence

14/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

the name of shallow pointers. Despite the lack of recursive data structures, such programs
are commonplace in industrial control software, which is the case of the examples sup-
plied by the EdF partner within the project. An example of an industrial application of
shallow pointers is the rotating buffer test case, presented in Section 5.

The main idea is to reduce the verification of such programs to decision problems
on hierarchical Numerical Transition Systems (NTS) [16] – essentially non-deterministic
integer programs with function calls. This translation is enabled by a static analysis
phase, in which the shape of the memory at each control point is computed approximately.
The symbolic representation used here is an in-house dialect of Separation Logic [2],
described in the following. The static analysis is modular, i.e. it is executed for each
procedure, in isolation, and infers the most general Hoare triple (pre- and post-condition)
under which the function may execute without a memory fault (null pointer dereference
or memory leak).

For instance, the Separation Logic formula ∃`1∃`2.x→ `1∧y → `2 | alloc(`1)∗alloc(`2)
states the existence of two different allocated memory cells `1 and `2, pointed by the
program variables x and y, respectivelly. The analysis propagates such formulae forward,
by computing postconditions as in e.g.:

{∃`1∃`2.x→ `1 ∧ y → `2 | alloc(`1) ∗ alloc(`2)}
free(x)

{∃`1∃`2.x→ `1 ∧ y → `2 | alloc(`1)}
free(y)

{∃`1∃`2.x→ `1 ∧ y → `2 | emp}

This analysis can detect several memory faults, such as null pointer dereference, or
double free. Even if the static analysis phase is successful, this however, does not guaran-
tee program correctness, since the symbolic model used is too coarse to represent pointer
arithmetic. For this reason, we generate an NTS that captures pointer arithmetic, and
use an existing off-the-shelf verification tool for NTS (e.g. Flata[15] or Eldarica[21]),
in order to detect finer errors, such as, e.g. unaligned memory accesses, freeing a pointer
not pointing to the beginning of an allocated area, etc.

4.3.0.6 Example Below we show a small C program (left), annotated with Separation
Logic invariants, together with the NTS generated by the Flata-C [17] plugin (right),
developped at Verimag. The output of the tool is basically an automaton augmented
with registers (counters) which are updated by first-order formulae, describing linear
arithmetic relations. One inherent difficulty, when using a low-level logical formalism
is the need to explicitly specify the frame conditions (the set of counters which are not
affected by the transformation). This explains the extensive use of the havoc primitive
(implicit copy of all counters not listed as arguments).

15/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

main (){

i n t i,j, *x;

{emp}

x=(i n t *) malloc (100* s i z e o f (i n t));

{∃`.x→ ` | alloc(`)}

i = 0;
j = NonDetInt ();

{∃`.x→ ` | alloc(`)}

wh i l e (*(x+i) != 0)

{∃`.x→ ` | alloc(`)}
i++;

}

main{ s0->s1 { 100*4 <= 0 && havoc() }
s0->s2 { offset__x_ ’=0 && 100*4 > 0

&& mid_1_size ’=100*4 && mid_1_base ’=1 &&
havoc(mid_1_base ,mid_1_size ,offset__x_) }

s1->s4 { i’=0 && havoc(i) }
s2->s5 { i’=0 && havoc(i) }
s4->sinter0 { havoc () }
sinter0 ->s7 { (j’,validity__j_ ’)= NonDetInt () &&

havoc(j) }
s5->sinter1 { havoc () }
sinter1 ->s8 { j’=NonDetInt () &&

havoc(j) }
s7->s9 { havoc() }
s8->s10 { havoc () }
s9->s11 { havoc () }
s10 ->s12 { havoc() }
s11 ->s13 { i’=i+1 && havoc(i) }
s12 ->s13 { not ((offset__x_+i*4 < mid_1_size &&

offset__x_+i*4 >= 0) &&
(offset__x_+i*4)\%4 = 0) && i’=i+1
&& havoc(i) }

s12 ->s16 { __if_ndet_cond__ = 0 &&
((offset__x_+i*4 < mid_1_size &&

offset__x_+i*4 >= 0) &&
(offset__x_+i*4)\%4 = 0) &&
i’=i+1 && havoc(i) }

s12 ->s17 { __if_ndet_cond__ != 0 &&
((offset__x_+i*4 < mid_1_size &&

offset__x_+i*4 >= 0) &&
(offset__x_+i*4)\%4 = 0) && havoc() }

s14 ->s9 { havoc() }
s15 ->s18 { havoc() }
s16 ->s10 { havoc() }
s17 ->s19 { havoc() }
s18 ->s20 { j >= 0 && havoc() }
s18 ->s22 { j < 0 && tmp_0’=0 && havoc(tmp_0) }
s19 ->s23 { j >= 0 && havoc() }
s19 ->s24 { j < 0 && tmp_0’=0 && havoc(tmp_0) }
s20 ->s26 { j < i && tmp_0’=1 && havoc(tmp_0) }
s20 ->s28 { j >= i && tmp_0’=0 && havoc(tmp_0) }
s22 ->s30 { __retres ’=1 && havoc(__retres) }
s23 ->s31 { j < i && tmp_0’=1 && havoc(tmp_0) }
s23 ->s32 { j >= i && tmp_0’=0 && havoc(tmp_0) }
s24 ->s33 { __retres ’=1 && havoc(__retres) }
s26 ->s30 { __retres ’=1 && havoc(__retres) }
s28 ->s30 { __retres ’=1 && havoc(__retres) }
s30 ->s34 { ret_val_ ’=__retres && havoc(ret_val_) }
s31 ->s33 { __retres ’=1 && havoc(__retres) }
s32 ->s33 { __retres ’=1 && havoc(__retres) }
s33 ->s35 { ret_val_ ’=__retres && havoc(ret_val_) } }

4.3.0.7 Distribution and Usage of Flata-C FLATA-C is distributed freely, under LGPL
public license on the website http://www-verimag.imag.fr/FLATA-C.hmtl. To use
Flata-C one must first download and install Frama-C. The tool can be invoked currently
by the command line: frama-c flatac <filename.c>

5 Industrial Test Cases

5.1 Rotating Buffer

The example in Figure 2 is inspired by the code of an application supplied by EdF.
The two functions put and get provide access to a buffer data structure used by several
reader and writer threads. The buffer data structure is given below:

16/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

typede f s t r u c t {
char * head;
char * out;
char * in;
i n t size;
i n t free;
i n t count;

} buffer_t;

This is a typical example of a shallow pointer data structure (notice the lack of recur-
sion in the above type definition), which is updated using pointer arithmetic operations.
We currently analyse this example with the FLATA-C plugin tool.

i n t put(buffer_t* b, i n t size , char * data) {
// check for space
i f (b->free < 4 + size) {

trace("put: aborted , overflow");
r e tu rn KO_OVERFLOW;

}
// write the length on 4 bytes
i f (b->out + 4 <= b->head + b->size) {

* ((i n t *)(b->out)) = size;
b->out += 4;
b->free -= 4;
// cycle , if needed
i f (b->out == b->head + b->size)

b->out = b->head;
}
// write the data on ’size’ bytes
i f (b->out + size <= b->head + b->size) {

// data fits entirely
memcpy(b->out , data , size);
b->out += size;

}
e l s e {

// data needs to be ’fractioned ’ in two parts ...
i n t s = (b->head + b->size) - b->out;
memcpy(b->out , data , s);
memcpy(b->head , data + s, size - s);
b->out = b->head + size - s;

}
// update for free space
b->free -= size;
b->count ++;
// re -align on 4 bytes
i f (size % 4) {

b->out += (4 - size % 4);
b->free -= (4 - size % 4);

}
// cycle , if needed
i f (b->out == b->head + b->size)

b->out = b->head;

r e tu rn OK;
}

i n t get(buffer_t* b, i n t * size , char ** data) {
i f (b->count == 0) {

trace("get: aborted , underflow");
r e tu rn KO_UNDERFLOW;

}
// read the data size
*size = * ((i n t *) b->in);
b->in += 4;
b->free += 4;
// cycle , if needed
i f (b->in == b->head + b->size)

b->in = b->head;
//
// allocate memory and read the data
*data = malloc(*size);
i f (b->in + (*size) <= b->head + b->size) {

// data comes in one reading
memcpy (*data , b->in , *size);
b->in += *size;

}
e l s e {

// data is split ,
i n t s = (b->head + b->size) - b->in;
memcpy(*data , b->in , s);
memcpy(*data + s, b->head , *size - s);
b->in = b->head + (*size - s);

}
// update for free space
b->free += *size;
b->count --;
// realign on 4 bytes
i f (*size % 4) {

b->in += (4 - *size % 4);
b->free += (4 - *size % 4);

}
// cycle , if needed
i f (b->in == b->head + b->size)

b->in = b->head;

r e tu rn OK;
}

Figure 2: Rotating buffer access functions

5.2 Mthread Test Case

We have used the Mthread plugin on the EDF-supplied code from which the rotating
buffer code is extracted. This work is preliminary: the case study is partially out of the

17/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

scope of the Value Analysis, mainly because of the presence of dynamic allocation, and
requires some selective rewriting to remove the more problematic cases of malloc.

The current results of the shared memory analysis are as follows:

[bufLLC.bufHead] write unprotected, read protected by (?)&bufLLC+24
[bufLLC{.currentIn; .currentOut; }] write protected by (?)&bufLLC+24,

read protected by &bufLLC+24
[bufLLC.size] write unprotected, read protected by &bufLLC+24
[bufLLC.free] write protected by (?)&bufLLC+24, read protected by &bufLLC+24
[bufLLC.frameNb] protected by &bufLLC+24

[bufTSDU.bufHead] write unprotected, read protected by (?)&bufTSDU+24
[bufTPDU.bufHead] write unprotected, read protected by (?)&bufTPDU+24

[codeEventApid] unprotected
[codeEvent] unprotected
[codeEventAna] unprotected
[codeEventPilote] unprotected

The variables codeEvent* are detected as being accessed unprotected. A code review
confirms this fact, but this does not necessarily indicates a defect in the code. Indeed,
those variables are scalar values, that are used as monotonic (increasing) bit-masks of
errors. On standard architectures, protecting those accesses is indeed not needed.

The buffers bufLLC, bufTSDU and bufTPDU are partially protected by their respective
mutexes, contained at offset 24 in the structure. In some cases, the accesses are de-
tected as not protected. Using the verbose output, which displays all the instructions
that perform the accesses (see §2.3), we notice that those are done by the main thread.
More precisely, they occur in a function that stops the program, the call-stack being
Buf_Free <- Stop_Analyseur. It is possible that those accesses occur only after the
other competing threads have been stopped. Since we do not currently take condition
variables into account, this is not automatically detected by Mthread. Still, the user
already has very precise information on what must be checked to ensure proper lock
discipline.

Finally, Figure 3 presents the concurrent control-flow graphs of two threads of the
program. Blue nodes are concurrent accesses to a shared variable, while green ones are
non-concurrent accesses to a shared ressource (the other competing threads are either
suspended or not created yet). Red nodes represent thread creation or cancellation (the
topmost red nodes in the left graph), or mutex locking or release.

While the resolution is not sufficient to read the labels on the nodes, the shapes of the
graphs are interesting in their own right. The leftmost graph is the CCFG of the main
thread, while the rightmost one is a synchronization thread. Unsurprisingly, the shapes
of the two graphs are completely different. Some typical code structures are nevertheless
present, and are very apparent on our simplified graphs:

– a sequence of thread creations, at the top of the main thread;
– a sequence of thread cancellations, on the left of the main thread;
– two infinite loops (one in each thread) materialized by return edges on the while(1)
node;

18/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

– multiple concurrent accesses in the body of the infinite loop, protected by a mutex
(synchronization thread).

6 Ongoing and Future Work

The VERIDYC project has entered its final phase, in which concurrent C code with
complex data structures is considered. This phase has been prepared, on one hand by
considering complex data structures in the sequential setting (the Flata-C and Celia
tools), and on the other hand, by considering concurrent programs with singly-linked
lists data structures (the HeapHop tool). Moreover, several concurrency models are
analysed using an interleaving-free parallel programming model, and the complexity of
their verification problems has been studied.

Future work includes tighter tool integration, in particular with the Mthread plugin
for concurrent C code analysis, as well as implementing a verification method for con-
current programs that may handle complex data structures. We plan on carrying out
experiments using industrial test cases, such as the rotating buffer example provided by
EdF.

References

[1] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress language specification.
Technical report, Sun Microsystems, Inc., 2006.

[2] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO, volume 4111
of Lecture Notes in Computer Science, pages 115–137. Springer, 2005.

[3] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with
separation logic. In Kwangkeun Yi, editor, APLAS, volume 3780 of Lecture Notes
in Computer Science, pages 52–68. Springer, 2005.

[4] Ahmed Bouajjani and Michael Emmi. Analysis of recursively parallel programs. In
Proc. of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL’12, Philadelphia, Pennsylvania, USA, pages 203–214. ACM,
2012.

[5] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar. Abstract
regular tree model checking of complex dynamic data structures. In Proceedings of
the 13th International Symposium Static Analysis (SAS’06), volume 4134 of Lecture
Notes in Computer Science, pages 52–70, Seoul, Korea, 2006. Springer.

[6] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent program-
ming with revisions and isolation types. In OOPSLA ’10: Proc. 25th Annual ACM

19/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

Start: main

Call retVal = Init_Analyseur();

Call retVal = Buf_Init(& bufTSDU,(unsigned int)100000);

return

buffer->bufHead = bufferData;
write bufTSDU.bufHead

return

Call retVal = Buf_Init(& bufTPDU,(unsigned int)100000);

buffer->bufHead = bufferData;
write bufTPDU.bufHead

return

Call retVal = Buf_Init(& bufLLC,(unsigned int)100000);

buffer->bufHead = bufferData;
write bufLLC.bufHead

return

buffer->currentIn = bufferData;
write bufLLC.currentIn

buffer->currentOut = bufferData;
write bufLLC.currentOut

buffer->size = size;
write bufLLC.size

buffer->free = size;
write bufLLC.free

buffer->frameNb = (unsigned int)0;
write bufLLC.frameNb

Call retVal = Create_And_Modif_Thread(& hThreadCfgSup,
 (void *(*)(void *))(& srcThreadCfgSup),

 THREAD_PRIORITY_IDLE);

Create thread &srcThreadCfgSup

return

Call retVal = Create_And_Modif_Thread(& hThreadEVTS,
 (void *(*)(void *))(& srcThreadEVTS),

 THREAD_PRIORITY_IDLE);

Create thread &srcThreadEVTS

return

Call retVal = Create_And_Modif_Thread(& hThreadTSDU,
 (void *(*)(void *))(& srcThreadTSDU),

 THREAD_PRIORITY_IDLE);

Create thread &srcThreadTSDU

return

Call retVal = Create_And_Modif_Thread(& hThreadTPDU,
 (void *(*)(void *))(& srcThreadTPDU),

 THREAD_PRIORITY_IDLE);

Create thread &srcThreadTPDU

return

Call retVal = Create_And_Modif_Thread(& hThreadLLC,
 (void *(*)(void *))(& srcThreadLLC),

 THREAD_PRIORITY_IDLE);

Create thread &srcThreadLLC

return

Call retVal = Create_And_Modif_Thread(& hThread3Com,
 (void *(*)(void *))(& srcThread3Com),
 THREAD_PRIORITY_TIME_CRITICAL);

Create thread &srcThread3Com

return

codeEventAna |= (unsigned long)(1 << 1);
read codeEventAna,
write codeEventAna

codeEventPilote |= (unsigned long)(1 << 0);
read codeEventPilote,
write codeEventPilote

codeEventAna |= (unsigned long)(1 << 0);
read codeEventAna,
write codeEventAna

while(1)

if (GO)

return

return

switch (WaitIntSpy)

then

Call Stop_Analyseur();

else

Call retVal = Suspend_Analyseur(); Call retVal = Suspend_Analyseur();

Call retVal = Suspend_Thread(hThreadLLC);

Cancel thread &srcThreadLLC

return

Call retVal = Suspend_Thread(hThreadTPDU);

Cancel thread &srcThreadTPDU

return

Call retVal = Suspend_Thread(hThreadTSDU);

Cancel thread &srcThreadTSDU

return

Call retVal = Suspend_Thread(hThreadLLC);

return

Cancel thread &srcThreadLLC

return

Call retVal = Suspend_Thread(hThreadTPDU);

Cancel thread &srcThreadTPDU

return

Call retVal = Suspend_Thread(hThreadTSDU);

Cancel thread &srcThreadTSDU

return

Call retVal = RazBuf_Analyseur();

Call retVal = Buf_Razb(& bufTSDU);

if (buffer->bufHead != (void *)0)
read bufTSDU.bufHead

return

Lock &bufTSDU+24

then

buffer->currentOut = buffer->bufHead;
read bufTSDU.bufHead

buffer->currentIn = buffer->bufHead;
read bufTSDU.bufHead

Release &bufTSDU+24

Call retVal = Buf_Razb(& bufTPDU);

if (buffer->bufHead != (void *)0)
read bufTPDU.bufHead

return

Lock &bufTPDU+24

then

buffer->currentOut = buffer->bufHead;
read bufTPDU.bufHead

buffer->currentIn = buffer->bufHead;
read bufTPDU.bufHead

Release &bufTPDU+24

Call retVal = Buf_Razb(& bufLLC);

if (buffer->bufHead != (void *)0)
read bufLLC.bufHead

return

Lock &bufLLC+24

then

buffer->currentOut = buffer->bufHead;
read bufLLC.bufHead,

write bufLLC.currentOut

buffer->currentIn = buffer->bufHead;
read bufLLC.bufHead,

write bufLLC.currentIn

buffer->free = buffer->size;
read bufLLC.size,
write bufLLC.free

buffer->frameNb = (unsigned int)0;
write bufLLC.frameNb

Release &bufLLC+24

Call Buf_Free(& bufTSDU);

return

free(buffer->bufHead);
read bufTSDU.bufHead

return

buffer->bufHead = (UCHAR *)((void *)0);
write bufTSDU.bufHead

Call Buf_Free(& bufTPDU);

free(buffer->bufHead);
read bufTPDU.bufHead

return

buffer->bufHead = (UCHAR *)((void *)0);
write bufTPDU.bufHead

Call Buf_Free(& bufLLC);

free(buffer->bufHead);
read bufLLC.bufHead

return

buffer->bufHead = (UCHAR *)((void *)0);
write bufLLC.bufHead

buffer->currentOut = (UCHAR *)((void *)0);
write bufLLC.currentOut

buffer->currentIn = (UCHAR *)((void *)0);
write bufLLC.currentIn

buffer->size = (unsigned int)0;
write bufLLC.size

buffer->free = (unsigned int)0;
write bufLLC.free

exit

Start: srcThread3Com

while(1)

if (tmp_0)

if ((int)val != 0x00)

else

switch ((int)val)

case 0x03: codeEventPilote |= (unsigned long)(1 << 2);
read codeEventPilote,
write codeEventPilote

case 0x02: codeEventPilote |= (unsigned long)(1 << 4);
read codeEventPilote,
write codeEventPilote

case 0x01: codeEventPilote |= (unsigned long)(1 << 3);
read codeEventPilote,
write codeEventPilote

if ((int)dataSize > 1500)

then

codeEvent |= (unsigned long)(1 << 15);
read codeEvent,
write codeEvent

else

then

if ((int)dataSize != 0)

else

then

Call retVal = Buf_Put(& bufLLC,buffer,(unsigned int)dataSize);

then

if (retVal == (spyErr)0x0901)

else

Lock &bufLLC+24

return

if (buffer->bufHead != (void *)0)
read bufLLC.bufHead

if (buffer->free < dataSize + (UINT)2)
read bufLLC.free

then

while(1)

then

temp = (unsigned short *)buffer->currentIn;
read bufLLC.currentIn

else

if (buffer->free < dataSize + (UINT)2)
read bufLLC.free

if (buffer->currentOut >= buffer->bufHead + buffer->size)
read bufLLC.bufHead,read bufLLC.currentOut,

read bufLLC.size

else

freed = (unsigned int)((int)*((USHORT *)buffer->currentOut) + 2);
read bufLLC.currentOut

thenelse

buffer->free += freed;
read bufLLC.free,
write bufLLC.free

if (buffer->free & 0xff000000)
read bufLLC.free

buffer->frameNb -= (UINT)1;
read bufLLC.frameNb,
write bufLLC.frameNb

then else

buffer->currentOut = buffer->bufHead + ((UINT)(buffer->currentOut - buffer->bufHead) + freed) % buffer->size;
read bufLLC.bufHead,read bufLLC.currentOut,read bufLLC.size,

write bufLLC.currentOut

if ((int)buffer->currentOut & 0x0001)
read bufLLC.currentOut

(buffer->currentOut) ++;
read bufLLC.currentOut,
write bufLLC.currentOut

then

else

buffer->free += (UINT)1;
read bufLLC.free,
write bufLLC.free

buffer->currentIn += 2;
read bufLLC.currentIn,
write bufLLC.currentIn

if (buffer->currentIn >= buffer->bufHead + buffer->size)
read bufLLC.bufHead,read bufLLC.currentIn,

read bufLLC.size

buffer->currentIn = buffer->bufHead;
read bufLLC.bufHead,

write bufLLC.currentIn

then

if (buffer->bufHead + buffer->size < buffer->currentIn + dataSize)
read bufLLC.bufHead,read bufLLC.currentIn,

read bufLLC.size

else

byteNb = buffer->size - (UINT)(buffer->currentIn - buffer->bufHead);
read bufLLC.bufHead,read bufLLC.currentIn,

read bufLLC.size

then

memcpy((void *)buffer->currentIn,(void const *)data,dataSize);
read bufLLC.currentIn

else

memcpy((void *)buffer->currentIn,(void const *)data,byteNb);
read bufLLC.currentIn

buffer->currentIn = buffer->bufHead;
read bufLLC.bufHead,

write bufLLC.currentIn

memcpy((void *)buffer->currentIn,(void const *)(data + byteNb),
 dataSize - byteNb);
read bufLLC.currentIn

buffer->currentIn += dataSize - byteNb;
read bufLLC.currentIn,
write bufLLC.currentIn

buffer->frameNb += (UINT)1;
read bufLLC.frameNb,
write bufLLC.frameNb

if ((int)buffer->currentIn & 0x0001)
read bufLLC.currentIn

(buffer->currentIn) ++;
read bufLLC.currentIn,
write bufLLC.currentIn

then

buffer->free -= dataSize + (UINT)2;
read bufLLC.free,
write bufLLC.free

else

buffer->free -= dataSize + (UINT)3;
read bufLLC.free,
write bufLLC.free

if (buffer->free & 0xff000000)
read bufLLC.free

if (buffer->currentIn >= buffer->bufHead + buffer->size)
read bufLLC.bufHead,read bufLLC.currentIn,

read bufLLC.size

thenelse

buffer->currentIn = buffer->bufHead;
read bufLLC.bufHead,

write bufLLC.currentIn

then

Release &bufLLC+24

else

if (retVal == (spyErr)0x0000)

then

else

else
codeEventAna |= (unsigned long)(1 << 2);

read codeEventAna,
write codeEventAna

then

buffer->currentIn += dataSize;
read bufLLC.currentIn,
write bufLLC.currentIn

exit

Figure 3: Examples of Mthread concurrent control-flow graphs

20/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 691–707. ACM, 2010.

[7] Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an
object-oriented approach to non-uniform cluster computing. In OOPSLA ’05: Proc.
20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 519–538. ACM, 2005.

[8] Javier Esparza and Pierre Ganty. Complexity of pattern-based verification for multi-
threaded programs. In POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 499–510. ACM, 2011.

[9] Cormac Flanagan and Shaz Qadeer. Thread-modular model checking. In SPIN
’03: Proc. 10th International Workshop on Model Checking Software, volume 2648
of LNCS, pages 213–224. Springer, 2003.

[10] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge
and check: New algorithms for the coverability problem of wsts. J. Comput. Syst.
Sci., 72(1):180–203, 2006.

[11] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local reasoning for storable locks and threads. In Zhong Shao, editor, APLAS,
volume 4807 of Lecture Notes in Computer Science, pages 19–37. Springer, 2007.

[12] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS.
In CAV ’97: Proc. 9th International Conference on Computer Aided Verification,
volume 1254 of LNCS, pages 72–83. Springer, 1997.

[13] Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[14] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-
modular abstraction refinement. In CAV ’03: Proc. 15th International Conference
on Computer Aided Verification, volume 2725 of LNCS, pages 262–274. Springer,
2003.

[15] Radu Iosif, Marius Bozga, and Filip Konecny. Flata:
http://www-verimag.imag.fr/FLATA.html, 2012.

[16] Radu Iosif, Marius Bozga, and Filip Konecny. Numerical transition systems:
http://richmodels.epfl.ch/ntscomp/ntslib, 2012.

[17] Radu Iosif and Florent Garnier. Flata-c: http://www-verimag.imag.fr/FLATA-C.html,
2012.

[18] Bart Jacobs and Frank Piessens. The Verifast Program Verifier. Technical report,
Department of Computer Science, Katholieke Universiteit Leuven, Belgium, 2008.

[19] Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous pro-
grams. In POPL ’07: Proc. 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 339–350. ACM, 2007.

21/22

Programme ARPEGE

Edition 2009

VERIDYC

DELIVERABLE 2

[20] Dexter Kozen. Lower bounds for natural proof systems. In FOCS ’77: Proc. 18th
Annual Symposium on Foundations of Computer Science, pages 254–266. IEEE Com-
puter Society, 1977.

[21] Viktor Kuncak, Hossein Hojjat, and Philipp Ruemmer. Eldarica:
http://lara.epfl.ch/w/eldarica, 2012.

[22] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

[23] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan & Claypool, 2006.
http://www.morganclaypool.com/doi/abs/10.2200/S00070ED1V01Y200611CAC002.

[24] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.
[25] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task

parallel library. In OOPSLA ’09: Proc. 24th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 227–
242. ACM, 2009.

[26] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: Practical static
race detection for c. ACM Trans. Program. Lang. Syst., 33(1):3:1–3:55, January 2011.

[27] Polyvios Pratikakis, Hans Vandierendonck, Spyros Lyberis, and Dimitrios S.
Nikolopoulos. A programming model for deterministic task parallelism. In MSPC
’11: Proc. 2011 ACM SIGPLAN Workshop on Memory Systems Performance and
Correctness, pages 7–12. ACM, 2011.

[28] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable.
ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.

[29] Keith H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, May 1998.

[30] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural
dataflow analysis via graph reachability. In POPL ’95: Proc. 22th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 49–61. ACM,
1995.

[31] J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proc. of LICS’02. IEEE CS Press, 2002.

[32] Cedomir Segulja and Tarek S. Abdelrahman. Synchronization-free and deterministic
coarse-grain parallelism: Architectural support and programming model. In FASPP
’11: Proc. First International Workshop on Future Architectural Support for Parallel
Programming, 2011.

[33] Jules Villard, Etienne Lozes, and Cristiano Calcagno. Heap-hop:
http://www.lsv.ens-cachan.fr/~villard/heaphop, 2011.

22/22

