
Ensuring Properties of Interaction Systems

G. Gössler(1), S. Graf(2), M. Majster-Cederbaum(3)?, M. Martens(3), J. Sifakis(2)

(1) INRIA Rhône-Alpes (2) VERIMAG (3) University of Mannheim
Montbonnot, France Grenoble, France Mannheim, Germany
gregor.goessler@inria.fr {graf,sifakis}@imag.fr mcb@informatik.uni-mannheim.de

Abstract. We propose results ensuring properties of a component-based sys-
tem from properties of its interaction model and of its components. We con-
sider here deadlock-freedom and local progress of subsystems. This is done in
the framework of interaction systems, a model for component based modelling
described in [9]. An interaction system is the superposition of two models: a
behavior model and an interaction model. The behavior model describes the
behavior of individual components. The interaction model describes the way
the components may interact by introducing connectors that relate actions from
different components. We illustrate our concepts and results with examples.

1 Introduction

Component-based design techniques are important for mastering design complexity.
Nevertheless, for these techniques to be useful, it is essential that they guarantee more
than syntax-based interface compatibilities. Methods based on the assume-guarantee
paradigm [15] or similarly on the more recent interface automata [4] are useful for the
verification of safety properties provided that they can be easily decomposed into a
conjunction of component properties.

We show how one can discuss properties such as (global) deadlock-freedom and
progress of a subset of components in a framework for component-based modelling by
making use of compositional methods in various ways. Given that violations of safety
properties can be expressed as deadlocks, these results can be also applied for general
safety properties.

In previous papers [8,9,7,16], a framework for component-based modelling was pro-
posed which clearly separates interaction from behavior. An interaction model de-
scribes how system components can interact. A behavior model is used to describe
the behavior of individual components. The aim of this framework is twofold. One is
to allow compositional verification. The second aim is to provide a composition frame-
work with a flexible means for controlling the collaboration of a set of components. A
general framework for defining such glue operators was presented in [16] and its main
ingredients are the interaction model presented here and priority rules, which are not
considered in this paper.

Here, we generalize the initial results of [9] for proving deadlock freedom and local
progress, 1) to apply to a broader class of systems and 2) to apply to subsystems. In
addition, we adapt the framework to support bottom-up system development. Hence,
we may start with some interaction systems that exhibit certain desirable properties.
? while working on this paper the author was a guest at and supported by the Ecole Poly-

technique in Palaiseau

These can be combined to build more complex systems. We may now ask under which
conditions the desirable properties can be ensured for the composed system.

We present and illustrate here the central notions and results concerning deadlock-
freedom and progress on a simple version of the framework without variables.

2 Connectors, Interaction Models and Interaction Systems

We consider a framework where components i in a set K of components together with
their port sets {Ai}i∈K are the basic building blocks. Components can interact, that
is cooperate. A set C of connectors controls the cooperation. A connector is a set of
ports with at most one port of each component, and an interaction is a subset of a
connector. As an example, we consider a system with three components 1, 2, 3 and an
interaction α = {a, b, c}, where a is a port of component 1, b a port of component 2
and c a port of component 3. The interaction α describes a step of the system where
a, b, and c are performed simultaneously. Each component i may constrain the order
in which interactions on its ports can take place. We consider here these constraints to
be given in the form of a transition system with edges labelled by elements in the port
set.

Definition 1
A component system CS = (K, {Ai}i∈K) consists of a set K of components and has
for each component i ∈ K a port set Ai, that is disjoint from the port set of every
other component. Ports are also referred to as actions.
The union A =

⋃
i∈K

Ai of all port sets is the port set of K. A finite nonempty subset

c of A is called a connector for CS, if it contains at most one port of each component
i ∈ K. A connector set is a set C of connectors for CS that covers all ports, and where
no connector contains any other:

a)
⋃

c∈C

c = A

b) c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

If c is a connector, I(c) denotes the set of all nonempty subsets of c and is called the
set of interactions of c. For a set C of connectors,

I(C) =
⋃
c∈C

I(c)

is the set of interactions of C. If C is a connector set, it is clear by the above that the
connectors c ∈ C are the maximal elements in I(C). For component i and interaction
α, we put i(α) = Ai ∩ α. We say that component i participates in α, if i(α) 6= ∅.

Remark 1
A connector c = {a}, a ∈ Ai, consisting of a single action, can be identified with this
action. It models the situation that a is considered as internal action of component i
that takes place independently of the environment.

In the following, we always assume that K = {1, ..., n} for some n ∈ N or that K is
countably infinite.

2

Example 1
We consider three components 1, 2, 3 with port sets A1 = {a1, a2, a3}, A2 = {b1, b2, b3},
and A3 = {c1, c2, c3}. The connector set

C = {{a1, b1}, {b1, c1}, {a1, c1}, {a2, b2, c2}, {a3}, {b3}, {b2, c3}}

describes a situation where any two systems may cooperate via their first port or they
cooperate all via their second port. Components 1 and 2 may act individually via their
third port. Finally component 2 may cooperate with the third port of component 3
via its second port. This situation can be graphically displayed by Figure 1 where a
connector c with |c| > 1 is represented by a line connecting its ports.

Remark 2
Please note, that connectors allow a very liberal form of cooperation. One action may
cooperate with m1 other actions in one connector whereas it cooperates with m2 actions
in a different connector. In the above example this is the case for action b2.

1 2 3

a1

b2 c2

b1

a3 c3b3

c1

a2

Fig. 1. Example of connectors

When we have specified for a component system (by choosing a connector set C) how
the components can interact, we want to state which interactions should be considered
independent of the availability of actions of other components.

In the example above, one design decision could be to declare the interactions
{a2} and {b1} independent. That is, no matter if the actions occurring in a connector
involving one of these actions are available or not, a2 respectively b1 may be performed
independently of the environment, i. e. the status of other components. For this purpose,
we introduce the notion of complete interactions and interaction model.

An interaction model for a component system CS is defined by a connector set
C together with a set Comp of interactions that are declared to be complete. If an

3

interaction is declared complete, it can be performed independently of the environment.
By environment we mean the other components and potential extensions of the system.
In [9] it is required that all supersets of a complete interaction in I(C) should also be
complete1, that is, Comp has to be closed with respect to I(C) in the following sense.

Definition 2
Let U, T be sets of sets, U ⊆ T . Then U is closed w.r.t. T , if for any u ∈ U it contains
all supersets t ∈ T of u. The closure of U w.r.t. T , cl(U, T), is the smallest set that
contains U and is closed w.r.t. T .

Definition 3
Let C be a connector set for the component system CS. If Comp ⊆ I(C) is closed with
respect to I(C), then

IM = (C,Comp)

is called an interaction model for CS. The elements of Comp are called complete
interactions.

Example 1 continued:
By choosing

Comp = cl({{a2}, {b1}}, I(C)) =

{{a2}, {a2, b2}, {a2, c2}, {a2, b2, c2}, {b1}, {a1, b1}, {b1, c1}}

we model the situation described above.
As we stated before, we assume in this paper that the local behavior of each com-

ponent i ∈ K of a component system is given by a transition system Ti. When the
connector set C is fixed, the global behavior of the system is given by allowing in each
global state those transitions that correspond to interactions in I(C).

Definition 4
Let CS = (K, {Ai}i∈K) be a component system and IM = (C,Comp) an interaction
model for CS.
Let for each component i ∈ K a transition system Ti = (Qi, Ai,→i) be given, where
→i⊆ Qi × Ai ×Qi. We write q

a→i q′ for (q, a, q′) ∈→i. We suppose that Qi ∩Qj = ∅
for i 6= j.
The induced interaction system is given by

Sys = (CS, IM, T),

where the global behavior T = (Q, I(C),→) is obtained from the behaviors of indi-
vidual components, given by transition systems Ti, in a straightforward manner:

– Q =
∏

i∈K Qi, the cartesian product of the Qi, which we consider to be order
independent. We denote states by tuples (q1, ..., qj , ...) and call them global states.

– the relation →⊆ Q× I(C)×Q, defined by
∀α ∈ I(C) ∀q, q′ ∈ Q : [q = (q1, ..., qj , ...)

α→ q′ = (q′1, ..., q
′
j , ...) iff

∀i ∈ K (qi
i(α)→i q′i if i participates in α and q′i = qi otherwise)].

1 Please note, that most results carry over to a situation where we drop this condition. The
results in Section 5 have to be slightly modified if we work in this more general setting.

4

A state qi ∈ Qi, resp. a global state q ∈ Q, is called complete, if there is some interaction
α ∈ C ∪ Comp and some q′i with qi

α→i q′i, resp. some q′ with q
α→ q′. Otherwise it is

called incomplete.

Note that a global state q = (q1, q2, ...) is complete if qi is complete for some i. But
q may be complete even if all qi are incomplete.

Please also note that we allow edges to be labelled by elements that are neither
maximal nor complete in the definition of T . For Sys itself we will only be interested in
transitions labelled with α ∈ C ∪ Comp as those are independent of the environment.
When, however, we compose interaction systems as described in Section we will need
the information about the transitions labelled with elements in I(C).

Remark 3
A connector c = {a1, ..., al} specifies a degree of cooperation. For this connector to be
performed in the global system, all l partners have to cooperate. As different connectors
may have different size and involve different components, the degree of cooperation
and the involved partners vary in the system. For instance, in one global state m1

components may cooperate via one connector and alternatively m2 components may
cooperate via some other connector. In another state yet another type of cooperation
is possible. Also, one port may cooperate in different connectors with different partners
and different degrees of cooperation. Note that this is a very interesting feature of the
model which allows for great flexibility and distinguishes our framework from others,
for example process algebras or I/O-automata [10]. In process calculi such flexibility is
either not realizable or can be achieved only in a clumsy way.

Example 2
Consider a set of components Workeri, 1 ≤ i ≤ n, that may choose between the
execution of two tasks, t0i and t1i. Each component Workeri can do its task t0i

independently of the others, but has to cooperate with component Control1 counting
the number of tasks t0 already started. For executing the task t1i, the component
Workeri needs the collaboration of Control21 or of Control22 for the whole duration of
the execution of t1i. As the execution of a task may have some duration such that during
its execution other interactions may take place, each task execution is represented by
a corresponding start and end event. The definition of the components together with
the local transition systems is provided in Figure 2.

In order to achieve the collaboration of these components, we consider the interac-
tion model IM1 = (C,Comp) with the connector set

C = {conn1i, conn2i, conn3si, conn3ei, conn4si, conn4ei|1 ≤ i ≤ n}

and Comp = ∅. Here

conn1i: {count, st_t0i}, for all i ∈ {1...n}
conn2i: {e_t0i}, for all i ∈ {1...n}
conn3si: {start1, st_t1i}, for all i ∈ {1...n}
conn3ei: {end1, e_t1i}, for all i ∈ {1...n}
conn4si: {start2, st_t1i}, for all i ∈ {1...n}
conn4ei: {end2, e_t1i}, for all i ∈ {1...n}

All connectors represent binary rendezvous or local actions, which can easily be
expressed in process algebra. However, the actions representing the start and end of

5

Control1 count

s0

Control21

r1

1

r1

2

end1

start1
end1

start1

Control22

r2

1

r2

2

end2

end2

start2

Worker1

st t01 st t11

e t11e t01

Workern
st t0n st t1n

e t1ne t0n

q1

0

q1

1
q1

2

st t01

e t01

st t11

e t01

start2

s1

count

count

Worker2st t02 st t12

e t12e t02

Fig. 2. Worker example: components with ports and component behavior

execution of task t1i can synchronize either with Control21 due to the connectors
conn3 or with Control22 due to the connectors conn4. This can not be directly ex-
pressed in CCS- or TCSP -style process algebra. Also, a third control unit Control23
for improving the performance of the system, could be added without changing the
behavior of the worker components. In this interaction system e.g. any global state q
containing qi

1, for some i, as well as (sl, q
1
2 , ..., qn

2 , r1
1, r

2
2) is complete for any l, whereas

e.g. the states (sl, q
1
2 , ..., qn

2 , r1
1, r

2
1) are incomplete for any l. We can modify this sys-

tem Sys = (CS, IM1, T) in various ways. One may modify the local behavior while
maintaining the interaction model. Or one may conceive a different scheme for the
interaction. For example, instead of interleaving the terminations of the tasks t0i, we
may also allow executing them in cooperation; this can be done by replacing the n
connectors conn2i by a single connector conn2, leading to interaction model IM2:

conn2 : {e_t01, e_t02, ..., e_t0n}

and declare each individual action to be complete. In this modelling when any number
of workers is ready to terminate they may do so simultaneously.

3 Properties of Interaction Systems

We consider in the following two essential properties of interaction systems and show
in the next sections how they can be established by either testing the property using
a graph criterion or by deriving the property from properties of subsystems. In what
follows, we consider a system

Sys = (CS, IM, T) with

6

CS = (K, {Ai}i∈K) and IM = (C,Comp) and T = (Q, I(C),→).

where T is constructed from given transition systems Ti, i ∈ K, as described in Defi-
nition 4.

The first property under consideration is (global) deadlock-freedom. A system is
considered to be (globally) deadlock-free if in every global state it may perform a
maximal or complete interaction, in other words, if every global state is complete.
This definition is justified by the fact that both for complete and maximal interactions
there is no need to wait for other components to participate. In the case of maximal
interactions there do not exist such components, in the case of complete interactions
this holds true by the definition of an interaction model. If a maximal or complete
interaction is enabled in a global state q, it may be performed right-away. A global
state q where neither a maximal or complete interaction may be performed means that
every component needs some other components’ cooperation which do not provide the
needed ports in q.

Definition 5
An interaction system Sys is called deadlock-free if for every state q ∈ Q there is a
transition q

α→ q′ with α ∈ C ∪ Comp.

In many systems there is a designated start-state q0 and one is only interested in the
states that can be reached from q0. To model this and similar situations we introduce a
notion of P -deadlock-freedom in [6], where P is a predicate on the state space and the
existence of a transition labelled by some α ∈ C ∪ Comp is only requested for states
satisfying P . For P = true we obtain the above notion of deadlock-freedom.

Deadlock-freedom is an important property of a system. But it does not provide
any information about the progress that an individual component i ∈ K may achieve.
Hence, it is interesting to consider the property of (individual) progress of component
i, i.e. the property that at any point of any run of the system, there is an option to
proceed in such a way that i will eventually participate in some interaction, which
means that a clever scheduler can achieve progress of component i.

Definition 6
Let Sys be a deadlock-free interaction system. A run of Sys is an infinite sequence σ

q0
α0→ q1

α1→ q2 . . .

with ql ∈ Q and αl ∈ C ∪ Comp. For n ∈ N, σn denotes the prefix

q0
α0→ q1

α1→ q2 . . .
αn−1→ qn

We define here a notion of progress of subsets K ′ ⊆ K of components in two ways.
In the first case, we just guarantee that the system may always proceed in such a way
that some component of K ′ participates in some interaction. In the second case, it may
proceed in such a way that every component i ∈ K ′ participates in some interaction.

Definition 7
Let Sys be a deadlock-free interaction system. Let K ′ ⊆ K.

– K ′ may progress in Sys, if for any run σ of Sys and for any n ∈ N there exists
σ′ such that σnσ′ is a run of Sys and for some i ∈ K ′, i participates in some
interaction α of σ′.

7

– K ′ may strongly progress in Sys, if for any run σ of Sys and for any n ∈ N there
exists σ′ such that σnσ′ is a run of Sys such that every i ∈ K ′ participates in some
interaction α of σ′.

If a set K ′ of components may progress in Sys then a clever scheduler can guarantee
that a run is chosen where infinitely often some interaction with participation of the
subsystem K ′ is performed.

If |K ′| = 1 then the two notions coincide and yield the special case presented in [9].
As for deadlock-freedom one may generalize the progress properties to P -progress.

In the following example, we look at some of the properties defined above. For this
example, we introduce the following rule of maximal progress.

Definition 8
The maximal progress rule restricts the transition relation for Sys to maximal tran-
sitions, i.e. to those transitions such that q

α→ q′, implies that there is no β, q′′ with
α (β and q

β→ q′′.

Example 3
We consider a system of n identical tasks that have to be scheduled, differently to the
preceding example, by allowing preemption and without explicit representation of a
scheduler or a controller. In our framework, we achieve this by collaboration of the n
tasks with an appropriate interaction model.

We consider a set of tasks i (i ∈ K = {1, ..., n}) that compete for some resource
in mutual exclusion. The transition system Ti of each task i is given in Figure 3 and
needs not to be further explained. Let the set of ports of component i be:

Ai = {activatei, starti, resumei, preempti, finishi, reseti}

We want to guarantee mutual exclusion with respect to the exec state, i.e. no two
tasks should be in this state at the same time, in the sense that this is an inductive
invariant 2. Mutual exclusion, in this sense, can be achieved using the rule of maximal
progress and the interaction model IM = (C,Comp) with the connector set C =
{conni

1, connij
2 , connij

3 , conng}, where

conni
1: {activatei}, i ∈ K

connij
2 : {preempti, startj}, i, j ∈ K, i 6= j

connij
3 : {resumei, finishj}, i, j ∈ K, i 6= j

conng: {reset1,...,resetn}

and Comp = cl({{startj}, {finishj}|1 ≤ j ≤ n}, I(C)).
Mutual exclusion is guaranteed because whenever component j enters execj , either

by startj or resumej , then either there is no other task in its exec-state or the com-
ponent i that is in the state execi must leave this state. The following items explain
why this is the case for each of the two transitions entering the exec-state:

– for resumej , the reason is that resumej can never happen alone. It can only be
executed together with the finishi action if component i is currently in the critical
state execi.

2 whenever a global state satisfies this condition then any successor state should satisfy it
as well

8

inaci

waiti

execi susp
i

activatei

starti

finishi

preempt
i

resumei

reseti

Fig. 3. Transition system of task i

– for startj , which is complete, the reason is the rule of maximal progress: when
component i is in the critical state execi, it can execute the preempti action.
Therefore, startj cannot be executed alone as also the pair {preempti, startj} is
enabled. On the other hand, if there is no process in the critical section, component
j can enter it by executing startj alone.

We now consider the properties of deadlock-freedom and progress. The interaction
system Sys = (CS, IM, T) as defined above, where we first ignore the rule of maximal
progress, is deadlock-free as the only incomplete state in each local transitions system
Ti is the state suspi. But the global state in which all components are in state suspi

admits the interaction conng = {reset1, ..., resetn} ∈ C and hence does not cause any
problems. Each component i may progress.

When a finite interaction system is deadlock-free, then it is also deadlock-free when
we apply the rule of maximal progress. This is the case because, even if we disallow
some transitions in a global state q, as they are not maximal there is always at least
one transition with a label in C∪Comp left. Hence, our example is deadlock-free under
the rule of maximal progress. Also every component may progress under the rule of
maximal progress. As all components have identical behavior it suffices to consider one
of them, say component 1. The only situation in which component 1 cannot proceed
by itself is when it is in state susp1. We have to show that we can reach a global state
where it can perform a transition:

– case 1) all other components are in the state susp. Then conng can happen and
component 1 has proceeded.

– case 2) at least one component j is in the state execj . Then {resume1, finishj}
may happen.

9

– case 3) not all other components are in state susp and none is in state exec. Then
there must be one component j that is in state inacj or waitj . If it is in state inacj

then it performs the complete action activatej and reaches state waitj . As there is
no component in state exec there is no preempt action available and startj may be
performed alone even under the rule of maximal progress. Now, {resume1, finishj}
may happen and component 1 has made progress.

In this example, we enforced deadlock-freedom by introducing the connector conng,
i.e., by solving the problem on the level of the interaction model. An alternative way
is to consider an invariant on the state space, namely the one expressing that not all
local states are susp-states. One then shows that if we start in a state that satisfies
this invariant then all successor states satisfy the invariant too. Hence, the problematic
state is never reached from a good state.

In [6] we introduce further properties of interaction systems, in particular local
deadlock-freedom, liveness, fairness, and robustness of properties with respect to failure
of ports/components.

4 Testing Deadlock-Freedom and Progress

The definition of deadlock-freedom and other properties of interaction systems are
conditions on the global state space and hence cannot be tested directly in an efficient
way. In [13] it was shown that deciding deadlock-freedom in interaction systems is NP-
hard. In [12] it was shown that deciding liveness is NP-hard. Therefore it is desirable to
establish (stronger) conditions that are easier to test and entail the desired properties.
In [6] we present a condition that can be tested in polynomial time and ensures liveness
of a set of components. In [11] we gave a parameterized condition that can be tested in
polynomial time and ensures (local) deadlock-freedom of an interaction system. Here
we present a generalization of a criterion developed in [9] that ensures deadlock-freedom
and give a condition that guarantees local progress of a set of components.

In what follows, we assume for simplicity that the local transition systems Ti have
the property that they offer at least one action in every state. The general case can
be reduced to this case by introducing idle actions or by adapting the definitions and
results below to include this situation.

In [9], a condition for deadlock-freedom of Sys (called interaction safety there) was
presented that uses a directed graph with labels in A =

⋃
Ai. The set of nodes is given

by
V = K ∪H

where K is the set of components and H is some subset of C×Comp. The edges relate
nodes in K with nodes in H and vice versa. The non-existence of certain cycles in the
graph ensures deadlock-freedom of the system. We propose here another graph called
GSys that is simpler and smaller. One can exhibit a system with n components where
the graph of [9] contains O(n3) nodes and Ω(n3) edges independently of the structure
of the transition systems. In contrast to this GSys has n nodes and - depending on the
local transition systems - possibly no edges. Based on GSys we establish a criterion
involving a notion of refutability that

– allows classifying a larger set of systems as deadlock-free
– is suitable to give a characterization of all deadlock-free systems.

10

In the following we define the labelled directed graph GSys. The nodes of this graph
are the components of Sys. There are two kinds of labels for the edges. An edge (i, c, j),
where c ∈ C, means that there is an incomplete state qi ∈ Qi such that i(c) is enabled
in qi and j participates in c. Similarly an edge (i, (c, α), j) means that there is an
incomplete state qi ∈ Qi such that i(c) is enabled in qi and j participates in α. Both
edges mean that it might happen in some global state (. . . , qi, . . .) that i has to wait
for j.

Definition 9
Let Sys be an interaction system. The dependency graph for Sys is a labelled directed
graph

GSys = (V,E)

where the set of nodes is V = K and the set of labels is L = L1 ∪ L2, with

L1 = {c ∈ C |6 ∃α ∈ Comp : α ⊆ c}

and
L2 = {(c, α) | c ∈ C,α ∈ Comp, α ⊆ c and 6 ∃β ∈ Comp : β (α}

and the set of edges is E ⊆ V × L× V such that

a) (i, c, j) ∈ E, where c ∈ L1, iff

∃qi ∈ Qi, qi incomplete, ∃q′i ∈ Qi such that qi
i(c)→ q′i and j(c) 6= ∅

b) (i, (c, α), j) ∈ E, where (c, α) ∈ L2, iff

∃qi ∈ Qi, qi incomplete, ∃q′i ∈ Qi such that qi
i(c)→ q′i and j(α) 6= ∅.

In addition to GSys, resp. subgraphs G of GSys, we will refer to snapshots of GSys,
resp. G, with respect to a global state q = (q1, q2, . . . , qi, . . .) ∈ Q

GSys(q) = (V,E(q))

where E(q) ⊆ E such that

a) (i, c, j) ∈ E(q), where c ∈ L1, iff

qi is incomplete and ∃q′i ∈ Qi such that qi
i(c)→ q′i

b) (i, (c, α), j) ∈ E(q), where (c, α) ∈ L2, iff

qi is incomplete and ∃q′i ∈ Qi such that qi
i(c)→ q′i

Moreover, we introduce the snapshot Ga
Sys(q) = (V,Ea(q)) relative to q and a =

(a1, ..., ai, ...) with ai ∈ Ai. Ga
Sys(q) contains those edges (i, c, j), resp. (i, (c, α), j), of

GSys(q), where ai = i(c) and we apply the same constructions to subgraphs of GSys.

Remark 4
Note that for the construction of the graph we inspect each local transition system Ti

separately and hence avoid the combinatorial complexity of global state analysis. In
the finite case, i.e. K = n, Ai finite and Ti finite for i = 1, ..., n, the graph GSys can
be constructed in cost polynomial in |C|, |Comp|, and the sum of the sizes of the local
transition systems.

In the following we will use predicates on global states that are conjunctions of
predicates on local states.

11

Notation 1
Let for i ∈ K predi be a state predicate on Qi. We say q = (q1, q2, . . .) ∈ Q satisfies
predi if qi satisfies predi.

We use the following predicates on states. en(ai) describes all states of component
i where action ai is enabled. cond(e) for edge e = (i, c, j) describes all global states
q = (q1, . . . , qi, . . .) such that i(c) is enabled in qi and there is some action ak in c that
is not enabled in the respective local state of q. inc(i) yields all incomplete states of
component i.

Definition 10
For ai ∈ Ai, i ∈ K: en(ai) = {qi ∈ Qi | qi

ai→ q′i for some q′i}.
For e = (i, c, j) ∈ E: cond(e) = en(i(c)) ∧ (∃x ∈ c : ¬en(x)).
For e = (i, (c, α), j) ∈ E: cond(e) = en(i(c)) ∧ (∃x ∈ α : ¬en(x)).
For i ∈ K: inc(i) = {qi ∈ Qi | qi is incomplete}.
If p = e1, ..., er is a path in GSys, then we put cond(p) =

∧r
i=1 cond(ei).

In the next definition the notion of critical path is introduced. A critical cycle
describes a situation where cyclic waiting of components could arise.

Definition 11
A path p in GSys is called critical, if (cond(p) ∧

∧
i∈p inc(i)) 6≡ false, where i ∈ p

means that node i is the start of some edge of p. A path p in GSys(q) is called critical
if (cond(p)∧

∧
i∈p inc(i)) (q) 6= false. A path that is not critical is called non-critical.

Certain paths can immediately be singled out as non-critical.

Lemma 1
If c ∈ L1 occurs | c |-times as a label on path p in GSys, where for any two edges
e = (i, c, k), e′ = (j, c, l) we have i 6= j, then cond(p) ≡ false. (Analogously for the
label (c, α)).

Definition 12
Let p be a critical cycle in a finite successor-closed subgraph Gf of GSys, q = (q1, q2, ...)
a global state. p is said to be refutable, if, whenever p lies in Gf (q), where qi is incom-
plete for every i, then there is a non-critical path p̂ in Gf (q) such that for every edge
e = (i, c, j), resp. e = (i, (c, α), j), on that path en(i(c))(qi) holds.

There are some simpler but stronger conditions that guarantee refutability.

Lemma 2
Let p be a critical cycle in a finite successor-closed subgraph Gf of GSys. p is refutable,
if one of the following conditions holds:

a) whenever p lies in Ga
f (q) then there is a non-critical path p̂ in Ga

f (q) with i ∈ p̂ ⇒
i ∈ p.

b) whenever p lies in Gf (q) then there is a non-critical path p̂ in Gf (q) such that for
every edge e = (i, c, j), resp. e = (i, (c, α), j), on that path en(i(c))(qi) holds if qi

is incomplete.

12

As the next theorem shows, a system is deadlock-free if there is a successor-closed
subgraph of GSys that does not contain any critical cycle. One can show that a system
satisfies this condition iff it satisfies the condition of [9]. In addition, the theorem states
that, if there is no such subgraph, we have the option to check if there is a subgraph
in which the critical cycles can be refuted. The second part of the theorem is more of
theoretical interest and gives a characterization of of deadlock-free systems in terms of
snapshots of the graph.

Theorem 1
Let Sys be an interaction system as above.

1) If there is a finite nonempty successor-closed subgraph Gf of GSys such that every
critical cycle in Gf is refutable, then Sys is deadlock-free.

2) Sys is deadlock-free iff ∀q ∈ Q the following holds
a) either GSys(q) has a node with out-degree 0
b) or there is α ∈ L1 resp. (c, α) ∈ L2 such that α = {ai1 , ..., air

}, aij
∈ Aij

and GSys(q) has a simple cycle with the nodes i1, ..., ir where all labels are α,
resp. (c, α) and for every such cycle p cond(p)(q) = false.

Proof: see Appendix

Remark 5
If |c| ≤ 2 for all c ∈ C then the condition in 1) can be tested in polynomial time. The
theorem can be formulated analogously for the notion of P -deadlock-freedom.

Example 3 continued: GSys has no proper successor-closed subgraphs, so we have to
check GSys for critical cycles. We discuss the case n = 3. In this case GSys is given in
Figure 4.

1 2 3
l32l21

l12 l23

l31

l13

Fig. 4. The graph GSys for the scheduling example, n = 3

13

Here lij = (connij
3 , {finishj}) where connij

3 = {resumei, finishj}. We have omit-
ted the label conng for better reading, so all edges without label carry the label conng.
Let us consider the cycle

p = (1, ({resume1, finish2}, {finish2}), 2), (2, ({resume2, finish1}, {finish1}), 1).

This cycle is critical as in q = (susp1, susp2, q3) with q3 ∈ {inac3, wait3, exec3, susp3}

cond(p) = (en(resume1) ∧ ¬en(finish2)) ∧ (en(resume2) ∧ ¬en(finish1))

is satisfied and qi is incomplete for i = 1, 2. This cycle, however, can be refuted. If the
last state is complete, i.e. 6= susp3, then we consider the path p̂ = (3, l32, 2). The path
p̂ is non-critical and satisfies condition b) of Lemma 2. If the last state is incomplete,
i.e. = susp3 then the path p̂ = (1, conng, 2) is non-critical as

cond(p̂) = en(reset1) ∧ (¬en(reset2) ∨ ¬en(reset3))

is false in the state (susp1, susp2, susp3). The other cycles in the graph are treated
analogously.

The graph that we use to determine deadlock-freedom of a system can also be used
to determine if a subsystem K ′ ⊆ K may progress. For this we construct the restriction
IM [K ′] of the interaction model IM to K ′ as given in the Appendix and define when
K ′ is controllable with respect to an interaction α ∈ I(C[K ′]), that is a potential
partner for an interaction in I(C) \ Comp, which means that we may ensure that the
subsystem defined by K ′ will be able to provide α, when it is needed.

Definition 13
Let Sys = ((K, {Ai}i∈K), IM, T) be an interaction system, K ′ ⊆ K. Let Sys[K ′] =
((K ′, {Ai}i∈K′), IM [K ′], T [K ′]) be the induced system where

T [K ′] = (Q[K ′], I(C[K ′]),→′), Q[K ′] =
∏

i∈K′

Qi

is given by Definition 4.

A state q ∈ Q[K ′] is called complete in Sys[K ′] if ∃q′ ∃α ∈ Comp[K ′]∪C[K ′] : q
α

→′ q′.
For X ⊆ Q[K ′] define pre(X) ⊆ Q[K ′] such that q ∈ pre(X) if

a) q ∈ Q[K ′] is complete in Sys[K ′] then ∃α ∈ Comp[K ′] ∃q′ : q
α

→′ q′ ∧ q′ ∈ X
b) q ∈ Q[K ′] is incomplete in Sys[K ′] then

∀q′ ∈ Q[K ′] ∀α ∈ (I(C[K ′]) \ Comp[K ′]) : (q
α

→′ q′ =⇒ q′ ∈ X)

For Q0 ⊆ Q[K ′], we denote by PRE(Q0) the least solution of X = Q0 ∪ pre(X).
PRE(Q0) is the set of states from which we can reach a state in Q0 along a path
in T [K ′] by always performing complete interactions whenever a state is complete in
Sys[K ′].

Definition 14
Let Sys be a deadlock-free interaction system.
K is controllable with respect to α ∈ I(C), if PRE(en(α)) = Q.
K ′ ⊆ K is controllable with respect to IM , if ∀α′ ∈ I(C[K ′])

(∃α ∈ I(C) \ Comp : (α ∪ α′ ∈ I(C) =⇒
K ′ is controllable with respect to α′ in the induced subsystem Sys[K ′])).

14

We can now present a condition ensuring that a subsystem induced by K ′ may
strongly progress, i.e. for every run σ we may at any point continue with a run σ′ such
that every component of K ′ will participate at some time in the run σ′.

Theorem 2
Let Sys be a deadlock-free interaction system. Let K ′ ⊆ K finite or infinite.
K ′ may strongly progress in Sys, if the following two conditions hold
a) ∀i ∈ K ′ ∃ a finite successor-closed subgraph Gf,i of GSys that contains i and does

not contain any critical cycle.
b) ∀i ∈ K ′ ∀α ∈ C[K ′′] owners(α) is controllable with respect to IM , where K ′′ is

the set of components of Gf,i, and owners(α) = {k ∈ K | k(α) 6= ∅}.

Proof: see Appendix.

In an analogous way, we can treat the concept of may progress.

5 Composition of systems
5.1 Composition of Interaction Models and Systems

In this section, we explain how interaction systems can be constructed bottom up from
smaller interaction systems. In contrast to other bottom up techniques composition is
performed in such a way that the individual components remain visible after compo-
sition. The composition operator can be also used as a basis for a different approach
to tackle the problem of NP-hardness of deciding the properties introduced above. In
order to establish a desirable property for a composite system we might try to estab-
lish the property for the subsystems and infer the property for the composite system.
In Section 5.2 we display some first conditions under which such a procedure can be
applied.

Our view of composition is given in the following. Composition is determined on
the level of the interaction models. We start with two (or more) disjoint interaction
models, say IMi = (Ci, Compi) for finite component systems (Ki, {Aj}j∈Ki), i = 1, 2.
We then decide how these two models should be able to interact by providing a new
set S of connectors that relate an interaction of one model with an interaction of the
other. We always assume that S contains only maximal elements with respect to set
inclusion, in analogy to the definition of a connector set. In addition, we may declare
a set BComp of new complete elements. For those we request that they must be new
interactions in I(S). This condition guarantees that by putting systems together, we
do not interfere with the structure of the sub-models.

The following proposition explains how to compose in general two interaction mod-
els with respect to a given set S of new connectors and a set BComp of new complete
elements.

Notation 2
Let X, Y be sets of port sets. Then X ./ Y := {x ∪ y | x ∈ X ∧ y ∈ Y }. maxel(X)
denotes the set of maximal elements of X with respect to set inclusion.

Proposition 1
Let CS1 = (K1, {Ai}i∈K1), CS2 = (K2, {Ai}i∈K2) be two component systems such
that K1, K2 are disjoint and the elements in {Ai}i∈K1∪K2 are pairwise disjoint. Let
IMi = (Ci, Compi) be interaction models for CSi, i = 1, 2. Let

15

– S ⊆ I(C1) ./ I(C2) be the set of new connectors,
– BComp ⊆ I(S) ∩ (I(C1) ./ I(C2)) be the set of new complete elements.

We put

– C = maxel(C1 ∪ C2 ∪ S),
– Comp = cl(Comp1 ∪ Comp2 ∪BComp, I(C)).

Then

a) C is a connector set for (K1 ∪K2, {Ai}i∈K1∪K2) with S ⊆ C and I(C) = I(C1) ∪
I(C2) ∪ I(S)

b) IM = (C,Comp) is an interaction model for (K1 ∪K2, {Ai}i∈K1∪K2).

Definition 15
Under the conditions of Proposition 1, the interaction model IM = (C,Comp) is said
to be obtained by composition from IM1 and IM2 and we write

IM = IM1

⋃
S,BComp

IM2.

When composing interaction models IMi and IMj for some i, j using a set S of new
connectors we use the notation Sij to denote S, where it is understood that Sij = Sji.
Analogously, BCompij is used to denote the set of new complete elements and it is
understood that BCompij = BCompji.

The composition of interaction models defined above is obviously commutative. One
can show that it is associative. Associativity is an important property that allows
composing systems incrementally without regarding the order in which subsystems are
added. In process calculi, interaction is modelled by parallel operators that enforce
restriction as in some versions of CSP [5] or a general parallel operator in combination
with a restriction operator as e.g. in CCS. Associativity is generally not given for
process calculus type parallel constructs.

Remark 6
The composition operator defined in Definition 15 is binary. If we want to compose
systems from more than two subsystems then we can exploit the associativity of the
operator. For example consider systems Sysi, where 1 ≤ i ≤ 3. We want to compose
these systems by introducing a connector c = α1∪α2∪α3 where αi ∈ I(Ci) and another
connector c′ = β1 ∪ β3 where βi ∈ I(Ci). To achieve this we first compose Sys1 with
Sys3 using the connectors α1 ∪α3 and c′. Then we compose the resulting system with
Sys2 using the connector (α1 ∪α3)∪α2 = c. Similarly we may handle the interactions
that we want to declare complete.

When the composition of the interaction models is defined, the interaction systems
are now composed in a straightforward manner to yield a more complex system.

Definition 16
Let Sysi = ((Ki, {Aj}j∈Ki), IMi, Ti), i = 1, 2, be interaction systems, S12 ⊆ I(C1) ./
I(C2) a set of new connectors and BComp12 ⊆ I(S12) ∩ (I(C1) ./ I(C2)), then

Sys1‖
S12, BComp12

Sys2

16

is the system given by

Sys = ((K1 ∪K2, {Aj}j∈K1∪K2), IM1

⋃
S12,BComp12

IM2, T) where

T = (Q1 ×Q2, I(C12),→12) and →12 is the least relation satisfying

1. if q1
α1→1 q′1 then (q1, q2)

α1→12 (q′1, q2)
2. if q2

α2→2 q′2 then (q1, q2)
α2→12 (q1, q

′
2)

3. if q1
α1→1 q′1, q2

α2→2 q′2, α1 ∪ α2 ∈ I(S12) then (q1, q2)
α1∪α2→12 (q′1, q

′
2).

From the associativity for composition of interaction models, it is straightforward
to see that the so defined parallel operator on interaction systems is associative and
Remark 6 applies analogously.

5.2 Ensuring Deadlock-Freedom and Progress by Construction

In this section we rise the question under which conditions desirable properties of
subsystems can be lifted to composed systems. As an example we treat deadlock-
freedom and progress of a component. In the following, we consider two interaction
systems Sysi = (CSi, IMi, Ti), i = 1, 2 that are composed by introducing a new set of
connectors S12. We assume that all conditions that are necessary to compose systems
are fulfilled, as required in Proposition 1. We first consider deadlock-freedom.

Proposition 2
Let Sysi i = 1, 2 be interaction systems. If one of the following conditions is satisfied

a) Let Sys1 be deadlock-free and C1 ⊆ Comp1 and let S12 ⊆ I(C1) ./ I(C2) be
arbitrary.

b) Sys1 is deadlock-free and S12 ⊆ (I(C1) \ C1) ./ I(C2)
c) Sys1 is deadlock-free or Sys2 is deadlock-free and

S12 ⊆ (Comp1 ./ (I(C2) \ C2)) ∪ ((I(C1) \ C1) ./ Comp2)

then
Sys1‖
S12, BComp12

Sys2

is deadlock-free for any BComp12 ⊆ I(S12) ∩ (I(C1) ./ I(C2)).

Sketch of proof for b): in this case the connectors of the deadlock-free system Sys1

remain maximal after composition and as the complete elements of Sys1 remain com-

plete by definition every state in Sys1‖
S12, BComp12

Sys2 offers a complete or maximal interaction

in I(C).

These are only some examples for conditions that can be put on the level of the
interaction models. Further conditions, as well as conditions imposing restrictions on
the local transition systems, and conditions involving the graph criterion of Theorem
1 are being elaborated.

17

p1

p2 p3

q1

q2

b1

b2

b3 d1 d2

Fig. 5. Local Transition Systems

Example 4
We consider the following two component systems CS1 and CS2. The components of
CS1 are 1 and 2 those of CS2 are 3 and 4. The port sets of 1 and 2 are given by
A1 = {a1, a2, a3} and A2 = {c1, c2, c3}. The port sets of the other two components
are given by A3 = {b1, b2, b3} and A4 = {d1, d2}. We define IMi = (Ci, Compi) for
CSi where C1 := {{a1, c1} , {a2, c2} , {a3} , {c3}} and Comp1 := {{a2} , {a2, c2} , {c3}}
respectively C2 := {{b1} , {b2, d1} , {d2} , {b3}} and Comp2 := {{b1}} . The behavior
of the second system Sys2 is given by the two local transition systems of Figure 5. It
is clear that Sys2 is deadlock-free. Now let the behavior of the first system be given by
any transition system that is labelled with interactions from I (C1). Composing the two
systems according to S12 := {{b2, a2, c2} , {b2, c3}} ∪ {{b1, a1} , {b1, c1}} and arbitrary
BComp12 yields a deadlock-free system according to Proposition 2 c).

We now consider the question under which conditions a component k that may
progress in Sys1 will still have this property when Sys1 is composed with some other
system. We present here two examples for conditions that are similar to those that
ensure deadlock-freedom for the composite system.

Proposition 3
Let Sysi, i = 1, 2, be interaction systems and let Sys1 be deadlock-free and let k ∈ K1

be a component that may progress in Sys1. If one of the following conditions is satisfied

a) S12 ⊆ (I(C1) \ C1) ./ I(C2)
b) S12 ⊆ Comp1 ./ I(C2)

then k may progress in Sys1‖
S12, BComp12

Sys2 for any BComp12 ⊆ I(S12) ∩ (I(C1) ./ I(C2)).

Sketch of proof for a): the reason is that the maximal and complete interactions of

Sys1 are still so in Sys1‖
S12, BComp12

Sys2.

18

6 Discussion and related work
The paper proposes results ensuring properties of component-based systems from prop-
erties of its interaction model and its components in the framework of interaction sys-
tems encompassing heterogeneous interaction presented in [9]. The following features
of the framework are instrumental for developing our results:
– the separation of behavior and coordination, where coordination is not expressed

by another behavior, but by an interaction model. We hope that the small examples
illustrate the flexibility of this framework for coordinating a set of components at
a high level of abstraction without interfering with the components’ behaviors.

– the associativity of the framework which is the basis for well-defined incremental
construction of systems.
An important motivation for introducing a clean theoretical framework for interac-

tion and control is the hope that this will provide means for proving properties – which
in general have to be shown on global models – in an incremental manner and as inde-
pendently as possible from the behavior models of components. It has been shown in
[13] that deciding deadlock-freedom in interaction systems is NP-hard. A similar result
exists for liveness of a set of components [12]. This motivates the focus on conditions for
establishing such properties. Our examples show the usefulness of these results. More
such results are still needed, and can probably be obtained when some specificities of
an application domain are exploited.

Related methods for showing absence of deadlocks or mutual waiting have been
studied in various settings, for example in the context of data base transactions in a
more restricted form [18,14] or operating systems for dynamic deadlock avoidance [17].

More recently, in [2], absence of interlocking has been studied for a framework of
communicating processes where processes interact in all their interactions with the
same fixed set of other processes. In [1] a condition under which a composed system is
deadlock-free is given in a CSP -like setting. In [3] a condition for the deadlock-freedom
of a component-system with two components is given.

Extended versions of our framework, including local variables of components and
priority rules as an additional control layer, are presently being implemented. The
implementation in the context of the Prometheus tool focusses on verification, in par-
ticular verification of SystemC specifications. A second implementation, called BIP,
focusses on the efficient execution of systems and includes also timed specifications.

The work presented here shows some typical results that can be established in this
framework. Further properties such as liveness, fairness and robustness as well as a
result presenting a condition that can be tested in polynomial time and ensures live-
ness can be found in [6]. There is work in progress that is concerned with robustness
and further exploits compositionality. Moreover first steps to incorporate probabilities
have been taken in order to eventually be able to make quantitative propositions about
the properties presented here. For example we want be able to prove statements like
“with probability p no deadlock occurs”. The notion of a component can be extended
with various additional information including invariants [9], but also observability cri-
teria and associated equivalence relations are of interest. Other possible interesting
extensions concern introduction of time, as well as dynamic reconfiguration.

References

1. Robert Allen and David Garlan. A Formal Basis for Architectural Connection. ACM
Trans. Softw. Eng. Methodol., 6(3):213–249, 1997.

19

2. P.C. Attie and H. Chockler. Efficiently verifiable conditions for deadlock-freedom of large
concurrent programs. In R. Cousot, editor, proc. VMCAI’05, volume 3385 of LNCS, pages
465–481, 2005.

3. Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp, and Martin
Wirsing. A Component Modell for Architectural Programming. In Proceedings of FACS
2005. ENTCS, 2005.

4. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the 8th
European Software Engineering Conference, Vienna, pages 109–120, 2001.

5. N. Francez, C.A.R. Hoare, D.J. Lehmann, and W.P. de Roever. Semantics of non-
determinism, concurrency and communication. Journal of Computer Science, 19:290–308,
1979.

6. G. Gössler, S. Graf, M. Majster-Cederbaum, M. Martens, and J. Sifakis. An Approach
to Modelling and Verification of Component Based Systems. In Proceedings of the 33rd
International Conference on Current Trends in Theory and Practice of Computer, Science
SOFSEM07, volume 4362 of LNCS, 2007.

7. Gregor Gößler and Joseph Sifakis. Component-based construction of deadlock-free sys-
tems. In proceedings of FSTTCS 2003, Mumbai, India, LNCS 2914, pages 420–433, 2003.

8. Gregor Gößler and Joseph Sifakis. Priority systems. In proceedings of FMCO’03, LNCS
3188, 2004.

9. Gregor Gößler and Joseph Sifakis. Composition for component-based modeling. Sci.
Comput. Program., 55(1-3):161–183, 2005.

10. Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219–246, September 1989.

11. Mila Majster-Cederbaum, Moritz Martens, and Christoph Minnameier. A Polynomial-
Time Checkable Sufficient Condition for Deadlock-Freedom of Component-Based Systems.
In Proceedings of the 33rd International Conference on Current Trends in Theory and
Practice of Computer, Science SOFSEM07, volume 4362 of LNCS, 2007.

12. Moritz Martens, Christoph Minnameier, and Mila Majster-Cederbaum. Deciding Liveness
in Component-Based Systems is NP-hard. Technical report TR-2006-017, Universität
Mannheim, 2006.

13. Christoph Minnameier. Deadlock-Detection in Component-Based Systems is NP-hard.
Technical report TR-2006-015, Universität Mannheim, 2006. also submitted for publica-
tion elsewhere.

14. Christos H. Papadimitriou. The Theory of Database Concurrency Control. Computer
Science Press, 1986.

15. A. Pnueli. In transition from global to modular temporal reasoning about programs. In
Logics and Models for Concurrent Systems. NATO, ASI Series F, Vol. 13, Springer Verlag,
1985.

16. Joseph Sifakis. A framework for component-based construction. In 3rd IEEE International
Conference on Software Engineering and Formal Methods, volume Key note talk, Koblenz,
2005.

17. A.S. Tanenbaum. Modern Operating Sytems. Prentice Hall, 2001.
18. Jeffrey D. Ullman. Data Base and Knowledge-Base Systems, vol.1. Computer Science

Press, 1988.

7 Appendix

7.1 Subsystems

In order to be able to talk about subsystems, we define a notion of restriction of an
interaction model to a subset of components.

20

Definition 17
Let CS = (K, {Ai}i∈K) be a component system, IM = (C,Comp) an interaction
model for CS and K ′ ⊆ K. Denote by

C[K ′] := {c′ ⊆ A[K ′] | ∃ c ∈ C : c′ = c ∩A[K ′]∧ 6 ∃ c̄ ∈ C : c′ (c̄ ∩A[K ′]}

the restriction of the connectors in C to K ′ where A[K ′] =
⋃

i∈K′
Ai.

We put Comp[K ′] = I(C[K ′]) ∩ Comp.
If C[K ′] is a connector set for CS[K ′] = (K ′, {Ai}i∈K′), then the induced interaction
model for CS[K ′] is given by: IM [K ′] := (C[K ′], Comp[K ′]) which is also called the
restriction of IM to K ′.

Remark 7
Note that in the case of a system with infinitely many components it might occur that
C[K ′] does not satisfy the conditions for a connector set. In particular, C[K ′] might
be empty for infinite systems. For finite systems C[K ′] is always a connector set for
CS[K ′] = (K ′, {Ai}i∈K′) and I(C[K ′]) = {α ∩A[K ′] | α ∈ I(C)}.

7.2 Proofs

Proof of Theorem 1
The proof of part 1) is an extension of the proof of the corresponding theorem in [9] if
there is a successor-closed subgraph that does not contain any critical. In addition one
has to show that refutability will do if there are critical cycles. We give here the proof
of part 2):

Let Sys be deadlock-free and q = (q1, q2, . . .) a state in Q.
Case 1: There exists i such that qi is complete.
Then the node i has out-degree 0 in GSys(q).
Case 2: ∀i qi is incomplete.
As Sys is deadlock-free, there is some β ∈ C ∪ Comp q

β→ q′ for some q′.
Case 2.1: β is a minimal element in C ∪ Comp.
Case 2.1.1: β = {ai1 , . . . , air

} ∈ C, r > 1
Hence β ∈ L1, then choose α = β. Hence (ij , α, ik) is an edge in GSys(q), j 6= k, j, k =
1, . . . , r. I.e. we obtain edges labelled with α between any two nodes in {i1, . . . , ir}. In
particular there is the cycle i1

α→ i2
α→ ir

α→ i1. For any such cycle p between
these nodes cond(p)(q) = false.
Case 2.1.2: β = {ai1 , . . . , air

} ∈ Comp \ C, r > 1
Let c be a connector with β ⊂ c. Put α = β. Then (c, α) ∈ L2. Hence we get edges
(ij , (c, α), ik) in GSys(q), j 6= k, j, k = 1, . . . , r and for all cycles p over all these nodes
labelled with (c, α) cond(p)(q) = false.
Case 2.2: β is not minimal in C ∪ Comp
Then there is some minimal α ∈ Comp with α ⊂ β. As there is some transition
q

β→ q′ for some q′ in T , we also have a transition q
α→ q′′ for some q′′. Let α =

{ai1 , . . . , air}, r > 1. We now proceed as in Case 2.1.2.
Let conversely each state q satisfy a) or b). Let q be an arbitrary state. We have to

show that there is some α ∈ C ∪ Comp with q
α→ q′ for some q′.

If a) is satisfied then let i be the node in GSys(q) with out-degree 0. In this case qi is
complete and the statement is obvious.

21

If b) is satisfied then there is α ∈ L1 or (c, α) ∈ L2 such that α = {ai1 , ..., air} whith
aij

∈ Aij
and GSys(q) has a simple cycle with the nodes i1, ..., ir where all labels are

α, resp. (c, α) and for every such cycle we have cond(p)(q) = false.

Case 1: Label α. Let w.l.o.g. i1
α→ i2

α→ ir
α→ i1 be a simple cycle with

cond(p)(q) = false. Then there must be one edge e with cond(e) = false, hence
for some j (en(aij

) ∧ ∃x ∈ α, x 6= aij
: ¬en(x))(q) = false. But this edge is only in

GSys(q) if en(aij
)(qij

) = true, hence α ∈ C can be performed in state q.
Case 2: Label (c, α): analogously.
Proof of Theorem 2:
One shows in a first step that, under the conditions of the theorem, every k ∈ K ′ may
progress in Sys. This can be done in a similar way as in [9] and is hence omitted here.
In a second step we conclude that for finite K ′, K ′ may strongly progress and finally
we show how to obtain the result for infinite K ′. Let K ′ be finite, K ′ = {k1, k2 . . . , kn}.
Let σ = q0

α0→ q1
α1→ q2 . . . be a run of Sys and n ∈ N. As k1 may progress in Sys there

exists σ′ such that σ(1) = σnσ′ is a run of Sys and k1 participates in some interaction
of σ′. Let σ′l1 be a prefix of σ′ of length l1 such that k1 participates in some interaction
of this prefix. Set n1 = n + l1 then there must be some σ′′ such that σ(2) = σ(1)n1σ

′′

is a run of Sys and component k2 participates in some interaction of σ′′. As K ′ is
finite this process terminates and we have a run in which finally every component
participates in some interaction. We now assume that K ′ is countable. We consider the
set R of all runs of Sys and introduce a metric d : R × R → {0, 1} on R by d(σ, σ̂) =
inf{1/2n : σn = σ̂n}. (R, d) is a complete metric space by standard arguments, hence
every Cauchy-sequence converges in R. We now proceed as above and construct for
every m ∈ N a run σ(m) such that every element {1, 2, . . . ,m} participates in some
interaction of σ(m) by maintaining the prefix that has participation of {1, . . . ,m} when
constructing the run that has participation of {1, . . . ,m+1}. In such a way we construct
a Cauchy-sequence of runs σ(1), σ(2), The limit of this sequence is the desired run
that has the prefix σn and then contains for every k ∈ K ′ an interaction in which k
participates.

22

	Ensuring Properties of Interaction Systems

