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About this part of the SMRe course

Objectives

I a brief overview on binary code reverse engineering:
motivation, challenges, techniques and tools . . .

I how to protect your code from beeing “reversed”:
obfuscation and de-obfuscations techniques . . .

Organisation

I 2 lectures (Dec. 13th and 20th, 11.30 am, room H201)
I 2 “labs” (Dec. 13th and 20th, 2 pm, room E212)
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Outline

Introduction

Low-level code representations

Disassembling

Retrieving source-level information

Bonus: Dynamic source-level information recovery

Some Tools . . .



Software = several knowledge/information levels

I (formal) models: overall architecture, component behaviors
I specifications, algorithms, abstract data structures
I source code

objects, variables, types, functions, control and data flows
I possible intermediate representations: Java bytecode, LLVM IR, etc.
I assembly
I binary code (relocatable / shared object / executable)

Some reverse-engineering settings:
I source level → model level . . .
I de-compiling: binary → source level
I disassembling: binary → assembly level
I etc.
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Why and when bothering with binary code ? (1)

→ when the source code is not/no longer available

I updating/maintaining legacy code

I “off-the-shell” components (COST), external libraries

I dynamically loaded code (applets, plugins, mobile apps)

I pieces of assembly code in the source

I suspicious files (malware, etc.)
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Why and when bothering with binary code ? (2)

→ when the source code is not sufficient

“What You See Is Not What You Execute” [T. Reps]

I untrusted compilation chain

I low-level bugs, at the HW/SW interface

I security analysis
going beyond standard programming language semantics
(optimization, memory layout, undefined behavior, protections, etc.)

Beware ! Reverse-engineering is restricted by the law . . .
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Example 1: Java ByteCode (stack machine)1

public static int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

public static int main(java.lang.String[]);
Code:

0: bipush 42
2: istore_1
3: iconst_1
4: istore_2
5: iload_1
6: ifle 20
9: iload_2
10: iload_1
11: imul
12: istore_2
13: iload_1
14: iconst_1
15: isub
16: istore_1
17: goto 5
20: iload_2
21: ireturn

1use javap -c to produce the bytecode
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Example 2: LLVM IR (machine à registre)

int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

CFG for 'main' function

%0:
 %1 = alloca i32, align 4
 %x = alloca i32, align 4
 %r = alloca i32, align 4
 store i32 0, i32* %1
 store i32 42, i32* %x, align 4
 store i32 1, i32* %r, align 4
 br label %2

%2:

 %3 = load i32* %x, align 4
 %4 = icmp sgt i32 %3, 0
 br i1 %4, label %5, label %11

T F

%5:

 %6 = load i32* %r, align 4
 %7 = load i32* %x, align 4
 %8 = mul nsw i32 %6, %7
 store i32 %8, i32* %r, align 4
 %9 = load i32* %x, align 4
 %10 = sub nsw i32 %9, 1
 store i32 %10, i32* %x, align 4
 br label %2

%11:

 %12 = load i32* %r, align 4
 ret i32 %12
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Example 3: assembly code (x86-64)2

int main() {
int x, r;
x=42 ; r=1 ;
while (x>0) {

r = r*x;
x = x-1;

} ;
return r ;
}

main:
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], 42
mov DWORD PTR [rbp-8], 1
jmp .L2

.L3:
mov eax, DWORD PTR [rbp-8]
imul eax, DWORD PTR [rbp-4]
mov DWORD PTR [rbp-8], eax
sub DWORD PTR [rbp-4], 1

.L2:
cmp DWORD PTR [rbp-4], 0
jg .L3
mov eax, DWORD PTR [rbp-8]
pop rbp
ret

2see https://godbolt.org/
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Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
→ need to be loaded in memory to be executed (using a loader)

However:
I no abolute addresses are stored in the executable code

→ decided at “load time”
I not all the executable code is stored in the executable file

(e.g., dynamic libraries)
I data memory can be dynamically allocated
I data can become code (and conversely . . . )
I etc.

→ the executable file should contain all the information required . . .

∃ standards executable formats: ELF (Linux), PE (Windows), etc.
I header
I sections: text, initialized/unitialized data, symbol tables, relocation

tables, etc.

Rks: stripped (no symbol table) vs verbose (debug info) executables . . .
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Example 1: Linux Elf
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Example 2: Windows PE
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x86 (32) assembly language in one slide

Registers:
I stack pointer (ESP), frame pointer (EBP), program counter (EIP)
I general purpose: EAX, EBX, ECX, EDX, ESI, EDI
I flags

Instructions:
I data transfer (MOV), arithmetic (ADD, etc.)
I logic (AND, TEST, etc.)
I control transfer (JUMP, CALL, RET, etc)

Adressing modes:
I register: mov eax, ebx
I immediate: mov eax, 1
I direct memory: mov eax, [esp+12]
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Stack layout for the x86 32-bits architecture

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
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ABI (Application Binary Interface)

to “standardize” how processor resources should be used
⇒ required to ensure compatibilities at binary level

I sizes, layouts, and alignments of basic data types
I calling conventions

argument & return value passing, saved registers, etc.
I system calls to the operating system
I the binary format of object files, program libraries, etc.

Figure: some calling conventions
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Understanding and analysing binary code ?

Disassembling !

statically:
disassemble the whole file content without executing it . . .

dynamically: disassemble the current instruction path during
execution/emulation . . .
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Static Disassembling (1)

Assume “reasonnable” (stripped) code only
→ no obfuscation, no packing, no auto-modification, . . .

Enough pitfalls to make it undecidable . . .
main issue: distinguishing code vs data . . .

I interleavings between code and data segments
I dynamic jumps (jmp <register>)
I possible variable-length instruction encoding, # addressing modes, . . .

e.g, > 1000 distinct x86 instructions
1.5 year to fix the semantics of x86 shift instruction at CMU

→ much worse when considering self-modifying code, packers, etc.

Example: x86 instruction format
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Static Disassembling (2)

Classical static disassembling techniques

I linear sweep: follows increasing addresses (ex: objdump)
↪→ pb with interleaved code/data ?

I recursive disassembly: control-flow driven (ex: IDAPro)
↪→ pb with dynamic jumps ?

I hybrid: combines both to better detect errors ...

Some existing tools

I IDA Pro
a well-known commercial disassembler, # useful features

I On Linux plateforms (for ELF formats):
I objdump (-S for code disassembling)
I readelf

I and many others (Capstone, Miasm, etc.)

Rk: may produce assembly-level IR instead of native assembly code
→ simpler language (a few instruction opcodes), explicit semantics (no
side-effects), share analysis back-ends
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Static disassembly (cont’d)

See some Emmanuel Fleury slides . . .
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Indirect Jumps

BRANCH Ri

(branch address computed at runtime and stored inside register Ri )

⇒ A critical issue for static disassemblers/analysers . . .

Occurs when compiling:
I some swicth statements
I high-order functions (with function as parameters and/or return values)
I pointers to functions
I dynamic method binding in OO-languages, virtual calls
I etc.
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Example of Indirect Jump (borrowed from E. Fleury)

Source code example:
enum {DIGIT, AT, BANG, MINUS}
f (char c) {
switch(c) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’: return DIGIT ;
case ’@’: return AT ;
case ’!’: return BANG ;
case ’-’: return MINUS ;
}
}

Code produced with x86-64 gcc8.23

f:
push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
movsx eax, BYTE PTR [rbp-4]
sub eax, 33 ; Ascii for ’!’
cmp eax, 31 ; 64 is Ascii for ’@’
ja .L2 ; out of bounds ...
mov eax, eax
mov rax, QWORD PTR .L4[0+rax*8] ; offset in a jump table
jmp rax

3See https://godbolt.org/
20 / 40



Example of Indirect Jump (borrowed from E. Fleury)

Source code example:
enum {DIGIT, AT, BANG, MINUS}
f (char c) {
switch(c) {
case ’0’: case ’1’: case ’2’: case ’3’: case ’4’:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’: return DIGIT ;
case ’@’: return AT ;
case ’!’: return BANG ;
case ’-’: return MINUS ;
}
}

Code produced with x86-64 gcc8.23

f:
push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
movsx eax, BYTE PTR [rbp-4]
sub eax, 33 ; Ascii for ’!’
cmp eax, 31 ; 64 is Ascii for ’@’
ja .L2 ; out of bounds ...
mov eax, eax
mov rax, QWORD PTR .L4[0+rax*8] ; offset in a jump table
jmp rax

3See https://godbolt.org/
20 / 40



Dynamic disassembly

Main advantage: disassembling process guided by the execution

I ensures that instructions only are disassembled
I the whole execution context is available (registers, flags, addresses, etc.)
I dynamic jump destinations are resolved
I dymanic libraries are handled
I etc.

However:
I only a (small) part of the executable is disassembled
I need some suitable execution plateform, e.g.:

I emulation environment
I binary level code instrumentation
I (scriptable) debugger
I etc.
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Objectives

When the code has been (partially !) disassembled . . .

. . . how to retrieve useful source-level information ?
(e.g.: variables, types, functions, control and data-flow relations, etc.)

Challenges
Still a gap between assembly and source-level code . . .

I basic source elements lost in translation:
functions, variables, types, (conditionnal) expressions, . . .

I pervasive address computations (addresses = values)
I etc.

Rk: 6= between code produced by a compiler and written by hand
(structural patterns, calling conventions, . . . )

Again, ∃ static and dynamic approaches . . .
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Function identification

Retrieve functions boundaries in a stripped binary code ?

Why is it difficult ?

I not always clean call/ret patterns:
optimizations, multiple entry points, inlining, etc.

I not always clean code segment layout:
extra bytes (6∈ any function), non-contiguous functions, etc.

Possible solution . . .
I from pattern-matching on (manually generated) binary signatures

I simple ones (push [ebp]) or advanced heuristics as in [IDAPro]
I standart library function signature database (FLIRT)

I . . .
I to supervised machine learning classification . . .

→ no “sound and complete” solutions . . .
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Variable and type recovery

2 main issues
I retrieve the memory layout (stack frames, heap structure, etc.)
I infer size and (basic) type of each accessed memory location

Memory Layout
“addresses” of global/local variables, parameters, allocated chunks

I static basic access paterns (epb+offset) [IDAPro]
I Value-Set-Analysis (VSA)

Types

I dynamic analysis:
type chunks (library calls) + loop pattern analysis (arrays)

I static analysis: VSA + Abstract Structure Identification
I Proof-based decompilation relation inference

type system + program witness [POPL 2016]
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Static variable recovery

Retrieve the address (and size) of each program “variable” ?

Difficult because:
I addresses and other values are not distinguishable
I address ↔ variable is not one-to-one
I address arithmetic is pervasive
I both direct and indirect memory adresssing

Memory regions + abstract locations
A memory model with 3 distinct regions:

I Global: global variables
I Local: local variables + parameters (1 per proc.)
I Dynamic: dynamically allocated chunks
I Registers

↪→ associates a relative address to each variable (a-loc)
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The so-called “naive” approach (IDAPro)

Heuristic
Adresses used for direct variable accesses are:

I absolute (for globals + dynamic)
I relative w.r.t frame/stack pointer (for globals)

→ can be statically retrieved with simple patterns . . .

Limitations
I variables indirectly accessed (e.g., [eax]) are not retrieved

(e.g., structure fields)
I array = (large) contiguous block of data

⇒ Fast recovery technique, can be used as a bootstrap
But coarse-grained information, may hamper further analyses . . .
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Example

typedef struct
{int i ; char c ;} S ;

int main() {
S x, a[10] ;
char *p1 ; int *p2 ;
p1 = &(a[9].c) ;
p2 = &(x.i) ;
return 0 ;

}

p1

p2

x.i

a −60

−10

−8

−4

var_60= byte ptr -60h
var_10= byte ptr -10h
var_8= dword ptr -8
var_4= dword ptr -4

push ebp
mov ebp, esp
sub esp, 60h
lea eax, [ebp+var_60]
add eax, 4Ch
mov [ebp+var_4], eax
lea eax, [ebp+var_10]
mov [ebp+var_8], eax
mov eax, 0
leave
retn
main endp
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Going beyond: Value Set Analysis (VSA)

Compute the contents of each a-loc at each program location . . .

. . . as an over-approximation of:

I the set of (integer) values of each data at each prog. loc.
I the addresses of “new” a-locs (indirectly accessed)

→ combines simultaneously numeric and pointer-analysis
Rk: should be also combined with CFG-recovery . . .

⇒ Can be expressed as a forward data-flow analysis . . .

A building block for many other static analysis . . .

I function “signature” (size and number of parameters)
I data-flow dependencies, taint analysis
I alias analysis
I type recovery, abstract structure identification
I etc.
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Example: data-flow analysis

Does the value of y depend from x ?

int x, *p, y;
x = 3 ;
p = &x ;
...
y = *p + 4 ; // data-flow from x to y ?

At assembly level:

1. needs to retrieve x address
2. needs to follow memory transfers from x address . . .

mov [ebp-4], 3 /* x=3 ; */
lea eax, [ebp-4]
mov [ebp-8], eax /* p = &x ;*/
mov eax, [ebp-8]

... /* follow operations on eax ...

mov eax, [eax] /* y = *p+4 ; ??? */
add eax, 4
mov [ebp-12], eax
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CFG construction

Main issue
handling dynamic jumps (e.g., jmp eax) due to:

I switch statements (“jump table”)
I function pointers, trampoline, object-oriented source code, . . .

Some existing solutions

I heuristic-based approach (“simple” switch statements) [IDA]
I abstract interpretation: interleaving between VSA and CFG expansion

I use of dedicated abstract domains
I use of under-approximations . . .

Rk: may create many program “entry points” ⇒ many CFGs . . .
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An (ultra) lightweight dynamic technique

Starting from a binary code . . .

I without source, debug information, symbol table
I but those architecture and calling convention is known
I and which can be instrumented & executed

. . . retrieve function-level information
I function arity and signatures
I quantified coarse grain data-flow information between functions

→ within a single code execution
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General approach

A 3-steps process

1. a lightweight dedicated binary code instrumentation to collect runtime
information

2. the one trace execution step to generate a log file

3. an offline log analysis to produce the results . . .

Relying on aggressive heuristics to approximate the notion of
parameter, type and data-flow . . .

32 / 40



Main heuristics

parameter definition
a memory location read before written is a input parameter
(holds also accross function boundaries)

type definition

I ADDR types can be deduced from load/store operations
I once an ADDR, always an ADDR
I non ADDR values are of type NUM

data-flow definition
I consider only ADDR flows
I ADDR collisions are not fortuitous:

ADRR value a produced by foo and consumed by bar ⇒ data-flow fron
foo to bar . . .
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Implementation

SCAT, open source: https://github.com/Frky/scat

I dynamic code instrumentation using PIN
→ function detection based on call/ret instructions

I minimize the size of the instrumentation code
→ extra implementation level heuristics
(e.g., a value betteen two ADDR is an ADDR)

I user given MIN_CALL threshold

I embeds an oracle4 for function signatures

Experiments:
I coreutils (> 100 pgms)
I 10 common Linux pgms: git, grep, mupdf, objdump, openssl, etc.

4based on clang
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Experimental results: arity

October 20th, 2017

overview prototypes address flow

35

- EVALUATION - PARAMETERS -

arity

PROGRAM accuracy fn fp total overhead

8cc 98 % 4 2 283 5,43

bash 95 % 8 7 283 1,92

coreutils 93 % 154 15 2515 3,67

git 96 % 15 6 492 2,37

grep 91 % 6 2 86 3,46

mupdf 94 % 13 7 348 4,55

objdump 89 % 7 7 132 4,10

openssl 96 % 4 3 194 3,04

opusenc 94 % 2 0 36 10,97

… … … … …

TOTAL 93 % 248 61 4546 3,76

(average) (average)(sum) (sum) (sum)
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Experimental results: types

October 20th, 2017

overview prototypes address flow

47

- EVALUATION - PARAMETERS -

type

PROGRAM accuracy fn fp total overhead

8cc 98 % 4 3 307 6,37

bash 96 % 14 2 374 1,75

coreutils 92 % 208 55 3299 2,51

git 94 % 26 4 530 2,12

grep 95 % 4 3 129 2,99

mupdf 96 % 17 11 746 7,12

objdump 94 % 3 12 231 3,59

openssl 95 % 9 5 308 2,99

opusenc 98 % 0 1 53 7,23

… … … … …

TOTAL 96 % 296 101 6294 3,53
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IDA Pro [HexRays]

A swiss-knife for reverse engineering . . .

I Commercial disassembler and debugger
I Supports 50+ processors (intel, ARM, .NET, PowerPC, MIPS, etc.)
I Recognizes library functions FLIRT (C/C++ only)
I Builds call graphs and CFGs
I Tags arguments/local variables
I Rename labels (variables names etc.)
I Provides scripting environment (IDC, Python) and debugging facilities
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Script example

#include <idc.idc>
/* this IDA pro script enumerate all funtions and prints info about them */
static main()
{
auto addr, end, args, locals, frame, firstArg, name, ret;
addr=0;
for ( addr=NextFunction(addr); addr != BADADDR; addr=NextFunction(addr) )
{
name=Name(addr);
end= GetFunctionAttr(addr,FUNCATTR_END);
locals=GetFunctionAttr(addr,FUNCATTR_FRSIZE);
frame=GetFunctionAttr(aiddr,FUNCATTR_FRAME);
ret=GetMemberOffset(frame, " r");
if (ret == -1) continue;
firstArg=ret +4;
args=GetStrucSize(frame) -firstArg;
Message("function %s start at %x, end at %x\n",name, addr, end);
Message("Local variables size is %d bytes\n",locals);
Message("arguments size %d (%d arguments)\n",args, args/4);

}
}
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PIN [Intel]

A swiss-knife for binary-level dynamic analysis . . .

A dynamic code instrumentation framework

I run time instrumentation on the binary files
I provides APIs to define insertion points and callbacks

(e.g., after specific inst., at each function entry point, etc.)
I Free for non-commercial use, works on Linux and windows
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Example: instruction counting

#include "pin.h"
UINT64 icount = 0;
void docount() { icount++; }

void Instruction(INS ins, void *v)
{
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)docount, IARG_END);
}

void Fini(INT32 code, void *v)
{ std::cerr << "Count " << icount << endl; }

int main(int argc, char * argv[])
{
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_StartProgram();
return 0;
}
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